Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình gợi ý nha
đường thẳng DE cắt đường thẳng AB tại F. Dễ dàng chứng minh tam giác DEC bằng Tam giác FEB (g-c-g) (Góc DEC = góc FEB (dối đỉnh); góc ECD bằng góc EBF ( sole trong); EC = EB (Trung điểm)) ==> DE = FE ==> AE là đường trung trực của DF ==> tam giác ADF cân tại A ==> Góc ADF = Góc AFD. Mà góc AFD = góc FDC ( sole trong) ==>Góc ADF = Góc AFD ==> DE là phân giác góc D
Xét ▲ADC và ▲BCD có:
AD = BC ( gt )
AC = BD ( gt )
DC chung
=> ▲ADC = ▲BCD ( c.c.c )
=> góc D = góc C ( c.t.ứ )
cmtt ta đc góc A = Góc B
Mà Góc D + góc A + Góc C + Góc B=360o
=> 2GócA+2GócD=360o
-> gócA+gócD=180o ( 2 góc trong cùng phía )=>AB//DC -> ABCD là hình thang
Vì góc D = góc C (cmt) nên ABCD là hình thang cân
GỌI E LÀ GIAO ĐIỂM CỦA AM;DC
CHỨNG MINH GÓC MAB VÀ GÓC MAC CÙNG BẰNG GÓC E
A B D C K M
gọi giao của AM và CD là K
ta chứng minh tam giac ADK cân tại D
dễ dàng chứng minh tam giác ABM= tam giác KCM
(do AM=MK(gt), gócAMB=gócCMK(đối đỉnh), góc ABM=góc MCK(do AB//CD))
từ đó suy ra AM=Mk
mà DM là phân giác nên tam giác ADK cân tại D
từ đó góc DAM=DKM=MAB
nen AM là phân giác góc A