Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác ABCD có AB//CD
nên ABCD là hình thang
mà AD=BC
nên ABCD là hình thang cân
Xét tứ giác ABCD có AB//CD
nên ABCD là hình thang
mà AD=BC
nên ABCD là hình thang cân
Xét tứ giác ABCD có AB//CD
nên ABCD là hình thang
mà AD=BC
nên ABCD là hình thang cân
a,
ABCD là hình thang cân \(=>\angle\left(CAB\right)=\angle\left(DBA\right)\)
=>2 góc ngoài cũng bằng nhau
=>2 tia phân giác 2 góc ngoài cũng tạo thành các góc bằng nhau
\(=>\angle\left(EAB\right)=\angle\left(FBA\right)\)=>ABFE là hình thang cân
b,từ 2 điểm A,B hạ các đường cao AM,BN
chứng minh được AMNB là h chữ nhật
=>MN=AB=6cm
dễ chứng minh được tam giác ADM=tam giác BCN(ch-cgn)
\(=>DM=CN=\dfrac{1}{2}\left(DC-MN\right)=\dfrac{1}{2}\left(12-6\right)=3cm\)
pytago=>\(BN=\sqrt{BC^2-NC^2}=\sqrt{5^2-3^2}=4cm\)
\(=>SABCD=\dfrac{BN\left(AB+CD\right)}{2}=........\)thay số tính
a, Xét tam giác ADC có Q là trung điểm của AD và P là trung điểm của DC => QP là đường trung bình của tam giác ADC.=> QP//AC và QP=\(\dfrac{1}{2}\)AC (1)
Xét tam giác ABC có M là trung điểm của AB và N là trung điểm của BC => MN là đường trung bình của tam giác ABC => MN//AC và MN=\(\dfrac{1}{2}\)AC (2)
Từ (1) và (2) => QP=MN và QP//MN => MNPQ là hình bình hành
b,Nếu ABCD là hình thang cân <=> AC=BD (2 đường chéo) (3)
Xét tam giác BCD có N là trung điểm của BC và P là trung điểm của DC => NP là đương trung bình của tam giác BCD => NP//BD và NP=\(\dfrac{1}{2}\)BD (4)
=> Từ (1) (3) và (4) ta có QP=NP
=> ABCD là hình bình hành có QP=NP ( cạnh kề )
=> ABCD là hình thoi
BẠN TỰ VẼ HÌNH NHA
Xét ΔOAB có OA=OB
nên ΔOAB cân tại O
Suy ra: \(\widehat{OAB}=\widehat{OBA}\)
mà \(\widehat{OAB}=\widehat{OCD}\)
và \(\widehat{OBA}=\widehat{ODC}\)
nên \(\widehat{OCD}=\widehat{ODC}\)
Xét ΔODC có \(\widehat{OCD}=\widehat{ODC}\)
nên ΔODC cân tại O
Suy ra: OD=OC
Ta có: OA+OC=AC
OB+OD=BD
mà OA=OB
và OC=OD
nên AC=BD
Xét hình thang ABCD có AC=BD
nên ABCD là hình thang cân