Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi E là giao điểm của AC và BD.
∆ECD có ∠C1 = ∠D1 (do ∠ACD = ∠BDC) nên là tam giác cân.
Suy ra EC = ED (1)
Tương tự ∆EAB cân tại A suy ra: EA = EB (2)
Từ (1) và (2) ta có: EA + EC = EB + ED ⇒ AC = BD
Hình thang ABCD có hai đường chéo bằng nhau nên là hình thang cân.
Gọi E là giao điểm của AC và BD.
∆ECD có ∠C1 = ∠D1 (do ∠ACD = ∠BDC) nên là tam giác cân.
Suy ra EC = ED (1)
Tương tự ∆EAB cân tại A suy ra: EA = EB (2)
Từ (1) và (2) ta có: EA + EC = EB + ED ⇒ AC = BD
Hình thang ABCD có hai đường chéo bằng nhau nên là hình thang cân.4
Gọi giao của AC và BD là O
góc OCD=góc ODC
=>OC=OD
góc ODC=góc OBA(AB//CD)
góc OCD=góc OAB(AB//CD)
mà góc OCD=góc ODC
nên góc OAB=góc OBA
=>OA=OB
OA+OC=AC
OB+OD=BD
mà OA=OB và OC=OD
nên AC=BD
Hình thang ABCD có AC=BD
nên ABCD là hình thang cân
Bạn tự vẽ hình được ko?
giải:
Vì hình thang ABCD có đường cao AH nên góc AHD=90 độ
Tam giác AHD có: \(\widehat{D}+\widehat{DAH}+\widehat{AHD}=180\) độ
\(\Rightarrow\widehat{D}+15+90=180\)
\(\Rightarrow\widehat{D}=180-15-90\)
\(\Rightarrow\widehat{D}=75\)
Tam giác DAC có: \(\widehat{D}+\widehat{DAC}+\widehat{ACD}=180\)
\(\Rightarrow75+90+\widehat{ACD}=180\)
\(\Rightarrow\widehat{ACD}=180-90-75\)
\(\Rightarrow\widehat{ACD}=15\)
Vậy số đo của góc ACD là 15 đô
- Gọi O là giao điểm của AC và BD.
- AB//CD nên góc BAC = góc ACD (so le trong), tương tự góc ABD=góc BDC.
- Theo đề bài góc ACD=gócBDC nên góc BAC=góc ABD.
=>Tam giác ABO cân tại O => 0A=0B.(1)
Tương tự tam giác ODC cân tại O =>OD=OC.(2)
Lại có góc AOD=góc BOC (đối đỉnh ) (3)
Từ (1), (2), (3) suy ra tam giác AOD = tam giác OBC nên suy ra :
+ AD=BC (*)
+ Góc ADB=góc BCA(**)
Từ (*) và (**) suy ra hình thang ABCD cân(hình thang có hai cạnh bên bằng nhau và hai góc ở đáy bằng nhau )
- Gọi O là giao điểm của AC và BD.
- AB//CD nên góc BAC = góc ACD (so le trong), tương tự góc ABD=góc BDC.
- Theo đề bài góc ACD=gócBDC nên góc BAC=góc ABD.
=>Tam giác ABO cân tại O => 0A=0B.(1)
Tương tự tam giác ODC cân tại O =>OD=OC.(2)
Lại có góc AOD=góc BOC (đối đỉnh ) (3)
Từ (1), (2), (3) suy ra tam giác AOD = tam giác OBC nên suy ra :
+ AD=BC (*)
+ Góc ADB=góc BCA(**)
Từ (*) và (**) suy ra hình thang ABCD cân(hình thang có hai cạnh bên bằng nhau và hai góc ở đáy bằng nhau )
- Gọi O là giao điểm của AC và BD.
- AB//CD nên góc BAC = góc ACD (so le trong), tương tự góc ABD=góc BDC.
- Theo đề bài góc ACD=gócBDC nên góc BAC=góc ABD.
=>Tam giác ABO cân tại O => 0A=0B.(1)
Tương tự tam giác ODC cân tại O =>OD=OC.(2)
Lại có góc AOD=góc BOC (đối đỉnh ) (3)
Từ (1), (2), (3) suy ra tam giác AOD = tam giác OBC nên suy ra :
+ AD=BC (*)
+ Góc ADB=góc BCA(**)
Từ (*) và (**) suy ra hình thang ABCD cân(hình thang có hai cạnh bên bằng nhau và hai góc ở đáy bằng nhau )
gọi BD giao với AC tại M
xét tam giác MDC ta có : góc MDC= góc MCD (gt)
=> tam giác MDC cân tại M => MC=MD
ta cũng có góc MAB= góc MBA=> tam giác MAB cân tại M
=> MA=MB
xét tam giác ADM và tam giác BCM
ta có : AM=MB (CMT)
MD=MC (CMT)
góc AMD= góc BMC (đ đ)
=> tam giác ADM = tam giác BCM
=> AD=BC
mà ABCD là hình thang
=> ABCD là hình thang cân
góc DAC=góc DBC
=>ABCD nội tiếp
mà ABCD là hình thang
nên ABCD là hình thang cân
bạn ơi bạn có thể nói cụ thể hơn được không ạ