K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2020

ta có diện tích tam giác bằng cạnh đáy nhân với chiều cao chia cho 2

=> diện tích tam giác oab là 14*8/2=56 (cm vuông)

=> diện tích tam giác ocd là 14*20/2=140 (cm vuông)

a: Xét ΔOAB vuông tại O và ΔOCD vuông tại O có

góc OAB=góc OCD
=>ΔOAB đồng dạng với ΔOCD

b: Xét ΔABD vuông tại A và ΔDAC vuông tại D có 

góc ABD=góc DAC

=>ΔABD đồng dạng với ΔDAC

14 tháng 5 2019

. a) HS tự chứng minh

b) Kẻ đường cao AH, BK,chứng minh được DH = CK

Ta được   H D = C D − A B 2 = 3 c m

Þ AH = 4cm Þ  SABCD = 20cm2

Xét ΔACD và ΔBDC có 

AC=BD

AD+BC

DC chung

Do đó: ΔACD=ΔBDC

Suy ra: \(\widehat{ACD}=\widehat{BDC}\)

hay \(\widehat{OCD}=\widehat{ODC}\)

Xét ΔODC có \(\widehat{OCD}=\widehat{ODC}\)

nên ΔODC cân tại O

Suy ra: OC=OD

Ta có: OA+OC=AC

OB+OD=BD

mà AC=BD

và OC=OD

nên OA=OB

12 tháng 9 2021
22 tháng 1 2019

Gọi chiều cao AH là x :

Áp dụng công thức tính diện tích tam giác ta được :

\(\frac{1}{2}\).BC.AH = 120

\(\frac{1}{2}\).20.x =120

    10x =120

       x = 12

 =) AH = 12 cm

b) Xét tam giác ABC có :

M là trung điểm của AB

 N là trung điểm của AC

=) MN là đường trung bình của tam giác ABC

=) MN // BC ; MN=\(\frac{1}{2}\)BC

Xét tứ giác BMNC có

MN // BC

=) Tứ giác BMNC là hình thanh

Giả sử MN cắt AH tại K

Xét tam giác ABH có :

M là trung điểm của AB

MK // BH

=) K là trung điểm của AH

Do K là trung điểm của AH

=) AK=KH=\(\frac{AH}{2}\)=\(\frac{12}{2}\)=6

Ta có MN=\(\frac{BC}{2}\)=10

Diện tích hình thang BMNC là

\(\frac{1}{2}\).KH.(MN+BC)= \(\frac{1}{2}\).6.(10+20)

                            = 90 cm2

22 tháng 1 2019

A B C H M N

2 tháng 8 2017
bạn ơi bạn làm đc bài này chưa cho mình lời giải với
19 tháng 6 2018

Chú ý :Δ là tam giác

a) Xét ΔAOD và ΔBAD có:

{Dˆ:chungAOˆD=DAˆB=90⇒ΔAOD≀ΔBAD(g.g)

b) Ta có: DAˆO=ABˆD=ABˆO(ΔAOD≀ΔBAD)

Và AOˆD=AOˆB=90 (2 đường chéo vuông góc tại O)

Do đó ΔAOD≀ΔBOA(g.g)

⇒ADAB=ODAO (1)

Lại có: {DAˆO:chungAOˆD=ADˆC=90⇒ΔADC≀ΔAOD(g.g)

⇒CDOD=ADAO⇔CDAD=ODAO (2)


 
Từ (1);(2)⇒ADAB=CDAD⇒AD2=AB⋅CD

c) Ta có: AB song song với DC (ABCD là hình thang)

⇒ABˆO=ODˆC(slt)

Và AOˆB=DOˆC(đ2)

Do đó ΔOCD≀ΔOAB(g.g)

⇒k=OCOA=CDAB=94

⇒SΔOCDSΔOAB=k2=942=8116

Vậy........................

Chúc bạn học tốt nhé !