Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Ta có: 1 d 2 I ; α = 1 d 2 + 1 h 2 trong đó d là khoảng cách từ tâm của đáy đến giao tuyến của α và đáy.
Khi đó d = 15 ⇒ độ dài dây cung a = 2 r 2 − d 2 = 40 ; đường cao thiết diện = h 2 + d 2 = 25
Do đó A = 1 2 a . h ' = 1 2 .40.25 = 500 c m 2 .
Phương pháp:
+) Gọi S là đỉnh hình nón và O là tâm đường tròn đáy của hình nón. Giả sử (P) cắt nón theo thiết diện là tam giác SAB.
+) Gọi M là trung điểm của AB, tính SM, từ đó tính S S A B
Cách giải:
Gọi S là đỉnh hình nón và O là tâm đường tròn đáy của hình nón.
Giả sử (P) cắt nón theo thiết diện là tam giác SAB.
Gọi M là trung điểm của AB ta có
a) Đường sinh l của hình nón là:
l = = = 5√41 (cm).
Diện tích xung quanh của hình nón là:
Sxq = πrl = 125π√41 (cm2)
b) Vnón = = (625.20π)/3 = (12500π)/3 (cm3)
c) Giả sử thiết diện cắt hình tròn đáy theo đoạn thẳng AB.
GỌi I là trung điểm AB, O là đỉnh của nón thì thiết diện là tam giác cân OAB.
Hạ HK vuông góc AI, H là tâm của đáy, thì HK vuông góc ( OAB) và theo giả thiết HK = 12 (cm)
Đáp án D
Gọi r là bán kính đáy của hình nón đỉnh O.
Ta có r R = h − x h ⇒ r = h − x h R
Chiều cao của khối nón đỉnh O là x
Thể tích của khối nón đỉnh O là:
V = 1 3 π h − x h 2 x = π R 2 6 h 2 h − x h − x 2 x ≤ π R 2 6 h 2 h − x + h − x + 2 x 3 3 = π R 2 6 h 2 2 h 3 3 = 4 π R 2 h 81
⇒ V m a x ⇔ h − x = 2 x ⇔ x = h 3
Đáp án D.
Giả sử hình nón có đỉnh S, đáy là đường tròn tâm I bán kính r, thiết diện đi qua đỉnh là ∆ S A D cân tại S.
Gọi J là trung điểm của AB, ta có A B ⊥ I J A B ⊥ S I → A B ⊥ S I J → S A B ⊥ S I J
Trong mặt phẳng (SIJ): Kẻ I H ⊥ S J , H ∈ S J
Từ S A B ⊥ ( S I J ) ( S A B ) ∩ ( S I J ) = S J → I H ⊥ S A B → I H = d ( I ; ( S A B ) ) = 24 ( c m ) I H ⊥ S J
1 I H 2 = 1 S I 2 + 1 S J 2 → 1 I J 2 = 1 24 2 - 1 40 2 = 1 900 → I J = 30
→ S J = S I 2 + I J 2 = 50 ( c m )
A B = 2 J A = 2 r 2 - I J 2 = 2 50 2 - 30 2 = 80 ( c m )
Vậy S ∆ S A B = 1 2 S J . A B = 1 2 . 50 . 80 = 2000 ( c m 2 )