K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2017

Đáp án: B

Khối tròn xoay được tạo thành bởi lục giác ABCDEF có thể tích gấp đôi khối tròn xoay (H) được tạo thành bởi hình thang ABCF.

Gọi V* là thể tích của khối nón tạo bởi tam giác đều SAB

Do đó ta có: V = 2 V ( H )  và

V ( H ) = 8 V * - V * = 7 V * = 7 πa 3 3 24

Kết luận: ta có thể tích cần tìm là

 

22 tháng 3 2017

12 tháng 12 2018


NV
20 tháng 7 2021

Gọi O là tâm đáy \(\Rightarrow SO\perp\left(ABCD\right)\)

Gọi M là trung điểm AB \(\Rightarrow AB\perp OM\Rightarrow AB\perp\left(SOM\right)\)

\(\Rightarrow\widehat{SMO}\) là góc giữa mặt bên  và đáy hay \(\widehat{SMO}=60^0\)

\(SO=OM.tan\widehat{SMO}=\dfrac{a}{2}.tan60^0=\dfrac{a\sqrt{3}}{2}\)

\(V=\dfrac{1}{3}SO.S_{ABCD}=\dfrac{1}{3}.\dfrac{a\sqrt{3}}{2}.a^2=\dfrac{a^3\sqrt{3}}{6}\)

Câu 1 : Khối lăng trụ có diện tích đáy bằng B và chiều cao bằng h có thể tích được tính theo công thức A. \(V=\frac{1}{3}Bh\) B. V = Bh C. V = 3Bh D. V = \(\frac{1}{2}Bh\) Câu 2 : Tính thể tích V của khối lăng trụ tam giác đều biết cạnh đáy bằng a và cạnh bên bằng \(a\sqrt{6}\) A. \(V=3\sqrt{2}a^3\) B. V = \(\frac{3\sqrt{2}}{2}a^3\) C. V = \(\frac{3\sqrt{2}}{4}a^3\) D. V = \(\sqrt{2}a^3\) Câu 3 : Tính thể tích V của khối lăng trụ...
Đọc tiếp

Câu 1 : Khối lăng trụ có diện tích đáy bằng B và chiều cao bằng h có thể tích được tính theo công thức

A. \(V=\frac{1}{3}Bh\) B. V = Bh C. V = 3Bh D. V = \(\frac{1}{2}Bh\)

Câu 2 : Tính thể tích V của khối lăng trụ tam giác đều biết cạnh đáy bằng a và cạnh bên bằng \(a\sqrt{6}\)

A. \(V=3\sqrt{2}a^3\) B. V = \(\frac{3\sqrt{2}}{2}a^3\) C. V = \(\frac{3\sqrt{2}}{4}a^3\) D. V = \(\sqrt{2}a^3\)

Câu 3 : Tính thể tích V của khối lăng trụ đứng có đáy là tam giác vuông cân có cạnh góc vuông bằng \(a\sqrt{2}\) , cạnh bên của lăng trụ bằng 5a

A. V = 5a3 B. V = \(2\sqrt{2}a^3\) C. V = \(\frac{5}{3}a^3\) D. V = \(\sqrt{2}a^3\)

Câu 4 : Tính thể tích V của khối lăng trụ tam giác đều . Biết cạnh đáy bằng \(a\sqrt{3}\) và đường chéo của một mặt bên bằng 2a

A. V = \(\sqrt{3}a^3\) B. V = \(\frac{\sqrt{3}}{4}a^3\) C. V = \(\frac{3\sqrt{3}}{4}a^3\) D. V = \(\sqrt{2}a^3\)

Câu 5 : Tính thể tích V của khối lăng trụ đứng ABC.A'B'C' có đáy là tam giác đều . Biết cạnh đáy bằng \(\alpha\) và góc giữa (A'BC) với mặt phẳng (ABC) bằng 600

A. V = \(\frac{3\sqrt{3}}{8}a^3\) B. V = \(\frac{3\sqrt{3}}{4}a^3\) C. V = \(\frac{3\sqrt{3}}{2}a^3\) D. V = \(\sqrt{3}a^3\)

3
NV
22 tháng 8 2020

5.

Gọi M là trung điểm BC \(\Rightarrow AM\perp BC\)

\(\Rightarrow BC\perp\left(A'AM\right)\)

\(\Rightarrow\widehat{A'MA}\) là góc giữa (A'BC) và (ABC)

\(\Rightarrow\widehat{A'MA}=60^0\)

\(AM=\frac{a\sqrt{3}}{2}\Rightarrow A'A=AM.tan60^0=\frac{3a}{2}\)

\(B=\frac{a^2\sqrt{3}}{4}\Rightarrow V=B.A'A=\frac{3\sqrt{3}}{8}a^3\)

NV
22 tháng 8 2020

1.

\(V=Bh\)

2.

\(B=\frac{a^2\sqrt{3}}{4}\Rightarrow V=Bh=\frac{a^2\sqrt{3}}{4}.a\sqrt{6}=\frac{3\sqrt{2}}{4}a^3\)

3.

\(B=\frac{1}{2}\left(a\sqrt{2}\right)^2=a^2\Rightarrow V=Bh=a^2.5a=5a^3\)

4.

\(h=\sqrt{\left(2a\right)^2-\left(a\sqrt{3}\right)^2}=a\)

\(B=\frac{\left(a\sqrt{3}\right)^2\sqrt{3}}{4}=\frac{3\sqrt{3}}{4}a^2\)

\(V=Bh=\frac{3\sqrt{3}}{4}a^3\)

Câu 1 : Tính thể tích V của khối chóp S.ABCD có đáy ABCD là hình vuông , cạnh a . Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy A. V = \(\frac{2}{3}a^3\) B. V = \(\frac{1}{6}a^3\sqrt{3}\) C. V = \(\frac{1}{3}a^3\) D. V = \(\frac{1}{2}a^3\sqrt{3}\) Câu 2 : Tính thể tích V của khối chóp tứ giác đều có cạnh đáy bằng a và chiều cao bằng 3a ? A. V = 3a3 B. V = 2a3 C. V = a3 D. V = \(a^3\sqrt{3}\) Câu 3 : Tính...
Đọc tiếp

Câu 1 : Tính thể tích V của khối chóp S.ABCD có đáy ABCD là hình vuông , cạnh a . Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy

A. V = \(\frac{2}{3}a^3\) B. V = \(\frac{1}{6}a^3\sqrt{3}\) C. V = \(\frac{1}{3}a^3\) D. V = \(\frac{1}{2}a^3\sqrt{3}\)

Câu 2 : Tính thể tích V của khối chóp tứ giác đều có cạnh đáy bằng a và chiều cao bằng 3a ?

A. V = 3a3 B. V = 2a3 C. V = a3 D. V = \(a^3\sqrt{3}\)

Câu 3 : Tính thể tích V của khối chóp tứ giác đều có cạnh đáy bằng 2a và mặt bên tạo với mặt đáy một góc 450

A. V = \(4\sqrt{3}a^3\) B. V = 2a3 C. V = \(\frac{a\sqrt{3}}{3}a^3\) D. V = \(\frac{4}{3}a^3\)

Câu 4 : Cho hình chóp S.ABC , ABC là tam giác vuông tại B , \(SA\perp\left(ABC\right)\) ; H , K tương ứng là hình

chiếu vuông góc của A lên SB , SC . Tính thể tích khối chóp S.AHK biết SA = SB = a và BC = \(a\sqrt{3}\)

A. V = \(\frac{\sqrt{3}}{6}a^3\) B. V = \(\frac{\sqrt{3}}{2}a^3\) C. V = \(\frac{\sqrt{3}}{60}a^3\) D. V = \(\frac{\sqrt{3}}{24}a^3\)

2
4 tháng 8 2020

câu 4 là SA = AB = a

NV
4 tháng 8 2020

4.

\(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\BC\perp AB\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\)

\(\Rightarrow BC\perp AH\)

\(AH\perp SB\Rightarrow AH\perp\left(SBC\right)\Rightarrow AH\perp SC\)

Lại có \(AK\perp SC\)

\(\Rightarrow SC\perp\left(AKH\right)\Rightarrow SK\) là đường cao của chóp S.AHK ứng với đáy là tam giác AHK vuông tại H (do \(AH\perp\left(SBC\right)\Rightarrow AH\perp HK\))

Áp dụng hệ thức lượng:

\(\frac{1}{AH^2}=\frac{1}{SA^2}+\frac{1}{AB^2}=\)

À thôi đến đây phát hiện ra đề bài sai

\(SA\perp\left(ABC\right)\Rightarrow SA\perp AB\Rightarrow\) tam giác SAB vuông tại A với SA là cạnh góc vuông, SB là cạnh huyền

\(\Rightarrow SB>SA\Rightarrow SB=SA=a\) là hoàn toàn vô lý

10 tháng 6 2017

Đáp án B