K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2017

Đáp án D

Ý tưởng: 1 - MN phải chăng sẽ là hai điểm đặc biệt nào đó

               2 – Khi nhận ra M là trung điểm của BA’ thì ta tiến hành tính toán MN qua điểm A’ bằng cách lấy P thuộc BC’!

Lời giải: Dễ có mặt phẳng (BA’C’) vuông góc với AB’. Do đó để MN là nhỏ nhất thì M là giao của AB’ và BA’, N là điểm thuộc BC’ sao cho góc giữa MN và (A’B’C’D’) là 30 0 . Gọi P là điểm thuộc BC’sao cho A’P cũng hợp với mặt phẳng đáy một góc  30 0 , khi đó MN là đường trung bình của tam giác BA’P nên MN = 1 2 A'P.

Giả sử độ dài đoạn B’H = x, khi đó PH = HC’ =  a – x    (tam giác PC’H vuông cân tại C’), và A'H = 

Theo điều ta đã giả sử ở trên thì góc giữa A’P và (A’B’C’D’) =   30 0 , do đó

Mặt khác ta lại có A'P = (2)

Từ  (1) và (2) ta tính được 

Từ đây ta rút ra được

=> Chọn phương án D. 

29 tháng 7 2019

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc

6 tháng 2 2018

Chọn A

10 tháng 10 2017

Chọn A

24 tháng 5 2021

A B C H(2;2) M E K(3;1) d :x+y-6=0 2 d :2x-y-2=0 1

Ta thấy ^EHK = ^EHM + ^KHM = ^BAE + ^CAM = ^BAC = 900

Đường thẳng HE: đi qua \(H\left(2;2\right)\), VTPT \(\overrightarrow{HK}\left(1;-1\right)\Rightarrow\) \(HE:x-y=0\)

Xét hệ \(\hept{\begin{cases}x-y=0\\x+y-6=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=3\end{cases}}}\Rightarrow E\left(3;3\right)\)

Đường thẳng KE: đi qua \(K\left(3;1\right)\), VTCP \(\overrightarrow{KE}\left(0;2\right)\Rightarrow KE:\hept{\begin{cases}x=3\\y=1+2t\end{cases}}\)

Xét hệ \(\hept{\begin{cases}2x-y-2=0\\x=3\\y=1+2t\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=4\end{cases}}\Rightarrow A\left(3;4\right)\)

Đường thẳng BC: đi qua \(H\left(2;2\right)\), VTPT \(\overrightarrow{HA}\left(1;2\right)\Rightarrow BC:x+2y-6=0\)(1)

Đường thẳng EB: đi qua \(E\left(3;3\right)\), VTPT \(\overrightarrow{KE}\left(0;2\right)\Rightarrow BE:y=3\)(2)

Đường thẳng KC: đi qua \(K\left(3;1\right)\), VTPT \(\overrightarrow{KE}\left(0;2\right)\Rightarrow KC:y=1\) (3)

Từ (1);(2) suy ra \(B\left(0;3\right)\), từ (1);(3) suy ra \(C\left(4;1\right)\)

Vậy \(A\left(3;4\right),B\left(0;3\right),C\left(4;1\right).\)

4 tháng 1 2018

Đáp án B.

Xét hàm số  trên (0;a) ta được: