Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B
Gọi M là trung điểm BB'. Ta có: CK // A'M => CK // (A'MD)
Khi đó d(CK, A'D) = d (CK, (A'MD)). Gắn hệ trục tọa độ như hình vẽ:
Ta có: A(0;0;0), B(a;0;0), D(0;a;0), A'(0;0;a), B'(a;0;a), C(a;a;0), M(a;0;a/2).
Vậy mặt phẳng (A'MD) nhận làm vectơ pháp tuyến.
Phương trình (A'MD) là x + 2y + 2z - 2a = 0
Do đó:
Chọn D.
Cách 1: Trong mặt phẳng (CDD'C) gọi P là giao điểm của CK và C'D'.
Suy ra KD' là đường trung bình của ∆ PCC' => D' là trung điểm của PC'.
Trong mặt phẳng (A'B'C'D') gọi M là giao điểm của PB' và A'D'
Ta có
Tứ diện PCC'B' có C'P, C'B và C'B đôi một vuông góc với nhau.
Đặt thì
Suy ra
Vậy
Cách 2: (Đã học chương 3, HH12)
Chọn hệ trục tọa độ sao cho: D(0;0;0), trục Ox trùng với cạnh DC, trục Oy trùng với cạnh DA, trục Oz trùng với cạnh DD', chọn a = 1.
Ta có :
Chọn đáp án B
Gọi M là trung điểm BB'
Gắn hệ trục tọa độ như hình vẽ:
Ta có: D(0;a;0), A'(0;0;a), C(a;a;0), M(a;0; a 2 )
Khi đó:
Mặt phẳng (A’MD) đi qua điểm và nhận làm vectơ pháp tuyến là:
Khi đó:
Chọn D.
Gọi P là trung điểm BB’. Ta có BD//PN => BD//(MPN). Do đó:
d(MN;BD) = d(BD;(MPN)) = d(B;(MPN))
Nhận thấy nên tam giác MPN vuông tại M.
Do đó
Ta có
Cách 2:
Gọi P là trung điểm BB’. Ta có BD//PN => BD//(MPN).
Đồng thời, MP//CB', PN//B'D' => (MPN)//(CB'D')
Do đó
(vì PC’ cắt B’C tại trọng tâm tam giác BB’C’).
Nhận thấy tứ diện C'.CB'D' là tứ diện vuông tại C' nên
Vậy
Cách 3: Tọa độ hóa
Chọn hệ trục tọa độ Oxyz như hình vẽ. Khi đó,