K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2017

Gọi M là trung điểm của BD, là trung điểm của A’B.

Suy ra tâm O của tam giác BDA’ là giao của DN và A’M

Phương án D đúng vì BD ⊥ (AMA') bởi BD ⊥ AM và BD ⊥ A’M ⇒ BD ⊥ AO

BA’ ⊥ (AND) do BA’ ⊥ DN và A’B ⊥ AN ⇒ A’B ⊥ AO

AO ⊥ (A’BD) ⇒ O là hình chiếu của A trên (A’BD).

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Đáp án D

7 tháng 5 2018

26 tháng 6 2017

Đáp án D.

13 tháng 1 2019

Đáp án D

24 tháng 4 2018

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 2)

- Ta có: CD // AB nên CD// mp (SAB)

⇒ Suy ra:

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 2)

- Kẻ MH ⊥ AB, HK ⊥ SM.

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 2)

- Do đó, tam giác ABC là tam giác đều.

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 2)

- Xét tam giác SHM vuông tại H; đường cao HK có:

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 2)

NV
5 tháng 2 2021

Kẻ \(BK\perp AC\Rightarrow BK\perp\left(SAC\right)\)

\(\Rightarrow BK=d\left(B;\left(SAC\right)\right)\)

\(\dfrac{1}{BK^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Rightarrow BK=\dfrac{AB.AC}{\sqrt{AB^2+AC^2}}=\dfrac{a\sqrt{3}}{2}\)

Kẻ \(CP\perp BH\Rightarrow CP\perp\left(SBH\right)\)

\(\Rightarrow CP=d\left(C;\left(SBH\right)\right)\)

\(\widehat{CBP}=\widehat{ACB}=30^0\Rightarrow CH=BC.sin30^0=\dfrac{a\sqrt{3}}{2}\)

\(BH=\dfrac{AC}{2}=\dfrac{1}{2}\sqrt{AB^2+AC^2}=a\)\(\Rightarrow SH=\sqrt{SB^2-BH^2}=a\)

Kẻ \(HE\perp BC\) , kẻ \(HF\perp SE\Rightarrow HF=d\left(H;\left(SBC\right)\right)\)

\(HE=CH.sin30^0=\dfrac{a}{2}\) 

\(\dfrac{1}{HF^2}=\dfrac{1}{SH^2}+\dfrac{1}{HE^2}\Rightarrow HF=\dfrac{SH.HE}{\sqrt{SH^2+HE^2}}=\dfrac{a\sqrt{5}}{5}\)

25 tháng 5 2019

Ta có:  BD = A’B = A’D nên tam giác A’BD là tam giác đều.

Lại có:  AB = AD = AA’ nên hình chiếu vuông góc của điểm A lên mp(A’BD) là tâm của tam giác BDA’.

Đáp án D

11 tháng 4 2019

1 tháng 3 2022

undefined

NV
1 tháng 3 2022

Do tam giác SAB cân và I là trung điểm AB \(\Rightarrow SI\perp AB\)

Mặt khác AB là giao tuyến của hai mặt phẳng vuông góc (SAB) và (ABCD)

\(\Rightarrow SI\perp\left(ABCD\right)\)

\(\Rightarrow SI\perp AD\) (1)

Lại có \(AD\perp AB\) (2) (giả thiết)

(1);(2)\(\Rightarrow AD\perp\left(SAB\right)\)

Mà \(AD\in\left(SAD\right)\Rightarrow\left(SAD\right)\perp\left(SAB\right)\)

b.

Theo cmt ta có \(\left\{{}\begin{matrix}SI\perp\left(ABCD\right)\\SI\in\left(SID\right)\end{matrix}\right.\) \(\Rightarrow\left(SID\right)\perp\left(ABCD\right)\)

c.

\(\overrightarrow{ID}.\overrightarrow{CK}=\left(\overrightarrow{IA}+\overrightarrow{AD}\right)\left(\overrightarrow{CD}+\overrightarrow{DK}\right)=\left(-\dfrac{1}{2}\overrightarrow{AB}+\overrightarrow{AD}\right)\left(-\overrightarrow{AB}-\dfrac{1}{2}\overrightarrow{AD}\right)\)

\(=\dfrac{1}{2}AB^2-\dfrac{1}{2}AD^2+\dfrac{1}{4}\overrightarrow{AB}.\overrightarrow{AD}-\overrightarrow{AB}.\overrightarrow{AD}\)

\(=\dfrac{1}{2}AB^2-\dfrac{1}{2}AD^2\) (do AB vuông góc AD nên \(\overrightarrow{AB}.\overrightarrow{AD}=0\))

\(=0\) (ABCD là hình vuông nên AB=AD)

\(\Rightarrow ID\perp CK\)

Mà \(SI\perp\left(ABCD\right)\Rightarrow SI\perp CK\)

\(\Rightarrow CK\perp\left(SID\right)\)

\(\Rightarrow\left(SKC\right)\perp\left(SID\right)\)

31 tháng 1 2017

 

Đáp án D

Góc giữa cạnh SA và đáy là  S A F ^ ,

Vì tam giác ABC và SBC là tam giác đều cạnh a nên ta có 

Vậy