cho hình lăng trụ đứng abcd,a'b'c'd'.có chiều cao aa'.đáy là tam giác vuông tại a...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 5 2021

Lời giải:

$AC=\sqrt{BC^2-AB^2}=\sqrt{20^2-16^2}=12$ (cm)

Diện tích đáy là: $(12.16):2=96$ (cm2)

Diện tích toàn phần:

$S=p_{đáy}.h+2S_{đáy}=(16+12+20).12+2.96=768$ (cm2)

Thể tích lăng trụ:

$V=S_{đáy}.h=96.12=1152$ (cm3)

5 tháng 5 2019

a. Thể tích là:
\(\frac{3x4}{2}\)x 9 = 54 cm3
Trong tam giác vuông ABC (vuông tại A), theo định lý Pytago, ta có cạnh huyền bằng:
\(\sqrt{3^2+4^2}\) = 5 cm
Diện tích xung quanh là:
(3 + 4 + 5) x 9 = 108 cm2
Diện tích toàn phần là:
108 + 3 x 4 = 120 cm2

5 tháng 5 2019

b. Diện tích xung quanh là:
(3 + 4) x 2 x 5 = 70 cm2
Đáp số : 70 cm2

29 tháng 3 2019

28 tháng 9 2019

20 tháng 11 2017

\(BC=\sqrt{4^2-3^2}=\sqrt{7}\left(cm\right)\)

\(S_{Xq}=\left(3+\sqrt{7}\right)\cdot5=15+5\sqrt{7}\left(cm^2\right)\)

\(V=3\cdot\sqrt{7}\cdot5=15\sqrt{7}\left(cm^3\right)\)

5 tháng 4 2021

Vì ABC vuông tại A nên diện tích đáy hình lăng trụ là:

3.4/2 =6 (cm2)

Thể tích hình lăng trụ là:

6 . 6 =36(cm3)

30 tháng 4 2023

Áp dụng định lí Py - Ta - Go , độ dài cạnh còn lại của mặt đáy tam giác là : 

\(\sqrt{3^2+4^2}=5\left(cm\right)\)

Diện tích xung quanh hình lăng trụ đứng :

\(S_{xq}=\left(3+4+5\right).8=96\left(cm^2\right)\)

Diện tích toàn phần :

\(S_{tp}=96+\left(3.4\right)=108\left(cm^2\right)\)

Thể tích :

\(V=\dfrac{3.4}{2}.8=48\left(cm^3\right)\)

30 tháng 4 2023

Éc ô éc cứu mee