K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Ta có:

+ BB’ vuông góc với (ABC)

+ AH thuộc (ABC)

=> AH vuông góc với BB’

+ CC’ vuông góc (ABC)

+ AH thuộc (ABC)

=> AH vuông góc với CC’

Xét (BB’C’C) có:

+ AH vuông góc với BB’

+ AH vuông góc với CC’

=> AH vuông góc với (BB’C’C)

Mà B’C’ thuộc (BB’C’C)

=> AH vuông góc với B’C’

QT
Quoc Tran Anh Le
Giáo viên
23 tháng 8 2023

loading...

Ta có M, M' lần lượt là trung điểm của BC, B'C', BCC'B' là hình bình hành suy ra MM' // CC'.

Vì các cạnh bên của hình lăng trụ ABC.A'B'C' đôi một song song nên AA'//CC'.

Mặt phẳng ((AMC) //(A'M'C') nên AMC. AM'C' là hình lăng trụ.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023


a) Ta có ABC.A'B'C' là hình lăng trụ nên \(\Delta ABC = \Delta A'B'C'\) suy ra AG = A'G'.

Lại có (ABC) // (A'B'C'), giao tuyến của mp(AGG'A') với (ABC) và (A'B'C')  lần lượt là AG, A'G' suy ra AG // A'G'.

Như vậy , tứ giác AGG'A' có AG = A'G', AG // A'G' là hình bình hành.

b) AGG'A' là hình bình hành suy ta AA' // GG'.

Lại có AA' // CC' (do ABC.A'B'C' là hình lăng trụ).

Mặt phẳng (AGC) // (A'G'C') suy ra AGC.A'G'C' là hình lăng trụ.

22 tháng 7 2018

7 tháng 8 2017

 

Đáp án B

Ta có 

Đồng thời

 

Nên

 

Tam giác B'A'C vuông tại A' có 

 

7 tháng 9 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) BC ⊥ AH và BC ⊥ A'H vì A'H ⊥ (ABC)

⇒ BC ⊥ (A'HA) ⇒ BC ⊥ AA'

Và B'C' ⊥ AA' vì BC // B'C'

b) Ta có AA' // BB' // CC' mà BC ⊥ AA' nên tứ giác BCC’B’ là hình chữ nhật. Vì AA' // (BCC'B') nên ta suy ra MM' ⊥ BC và MM' ⊥ B'C' hay MM’ là đường cao của hình chữ nhật BCC’B’.

17 tháng 6 2017

Đáp án C

Gọi M là trung điểm của BC suy ra 

Lại có 

24 tháng 11 2017

Đáp án C

25 tháng 11 2017

Đáp án A

Xét ∆AOA’, ta có:

AO2 + OA’2 = AA’2

Vậy

20 tháng 3 2018

Giải bài 2 trang 71 sgk Hình học 11 | Để học tốt Toán 11

a) Do ABC.A’B’C’ là hình lăng trụ nên ta có: BCC’B’ là hình bình hành

Xét tứ giác BCC’B’ có M và M’ lần lượt là trung điểm của BC và B’C’ nên MM’ là đường trung bình

Giải bài 2 trang 71 sgk Hình học 11 | Để học tốt Toán 11

Lại có: AA’// BB’ và AA’= BB’ ( tính chất hình lăng trụ) (2)

Từ (1) và (2) suy ra: MM’// AA’ và MM’ = AA’

=> Tứ giác AMM’A’ là hình bình hành

b) Trong (AMM’A’) gọi O = A’M ∩ AM’, ta có :

Ta có : O ∈ AM’ ⊂ (AB’C’)

⇒ O = A’M ∩ (AB’C’).

c)

Giải bài 2 trang 71 sgk Hình học 11 | Để học tốt Toán 11

Gọi K = AB’ ∩ BA’, ta có :

K ∈ AB’ ⊂ (AB’C’)

K ∈ BA’ ⊂ (BA’C’)

⇒ K ∈ (AB’C’) ∩ (BA’C’)

Dễ dàng nhận thấy C’ ∈ (AB’C’) ∩ (BA’C’)

⇒ (AB’C’) ∩ (BA’C’) = KC’.

Vậy d cần tìm là đường thẳng KC’

d) Trong mp(AB’C’), gọi C’K ∩ AM’ = G.

Ta có: G ∈ AM’ ⊂ (AM’M)

G ∈ C’K.

⇒ G = (AM’M) ∩ C’K.

+ K = AB’ ∩ A’B là hai đường chéo của hình bình hành ABB’A’

⇒ K là trung điểm AB’.

ΔAB’C’ có G là giao điểm của 2 trung tuyến AM’ và C’K

⇒ G là trọng tâm ΔAB’C’.