K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2017

a) Xét tứ giác ADME có:

∠(DAE) = ∠(ADM) = ∠(AEM) = 90o

⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).

b) Ta có ME // AB ( cùng vuông góc AC)

M là trung điểm của BC (gt)

⇒ E là trung điểm của AC.

Ta có E là trung điểm của AC (cmt)

Chứng minh tương tự ta có D là trung điểm của AB

Do đó DE là đường trung bình của ΔABC

⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC

⇒ Tứ giác CMDE là hình bình hành.

c) Ta có DE // HM (cmt) ⇒ MHDE là hình thang (1)

Lại có HE = AC/2 (tính chất đường trung tuyến của tam giác vuông AHC)

DM = AC/2 (DM là đường trung bình của ΔABC) ⇒ HE = DM (2)

Từ (1) và (2) ⇒ MHDE là hình thang cân.

d) Gọi I là giao điểm của AH và DE. Xét ΔAHB có D là trung điểm của AB, DI // BH (cmt) ⇒ I là trung điểm của AH

Xét ΔDIH và ΔKIA có

IH = IA

∠DIH = ∠AIK (đối đỉnh),

∠H1 = ∠A1(so le trong)

ΔDIH = ΔKIA (g.c.g)

⇒ ID = IK

Tứ giác ADHK có ID = IK, IA = IH (cmt) ⇒ DHK là hình bình hành

⇒ HK // DA mà DA ⊥ AC ⇒ HK ⊥ AC

17 tháng 11 2017

(Hình Tự vẽ)

Vì tam giác ABC có \(\widehat{A}=90\)

Mà AE là đường trung tuyến ( Vì E là trung điểm BC )

nên AE là đường trung tuyến ứng với cạnh huyễn

Suy ra \(AE=\frac{BC}{2}\)

hay AE = BE=EC                 (1)

Mà AE=ED                           (2)

Từ (1), và (2) suy ra AE=EB=EC=ED

Vì tứ giác ABDC có các đường chéo cắt nhau tại trung điểm mỗi đường và chúng đều bằng nhau

nên ABCD là hình chữ nhật

b, Vì EB=EC;FB=FK 

nên EF là đường trung bình tam giác KBC 

Suy ra EF//AC (1)

và EF=KC/2=AK=AC(2)

Từ (1) và (2) suy ra EF//AC VÀ EF=AC

Vậy ACEF là hình bình hành

27 tháng 11 2021

\(a,\widehat{AHD}=\widehat{AED}=\widehat{HAE}=90^0\\ \Rightarrow AHDE\text{ là hcn}\\ b,\text{Vì }D\text{ là trung điểm }BC;DE\text{//}AB\left(\perp AC\right)\\ \Rightarrow E\text{ là trung điểm }AC\\ \text{Mà }E\text{ là trung điểm }DM\\ \Rightarrow ADCM\text{ là hbh}\)