K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2018

Đáp án là C

Nhận xét: B'NDM là hình bình hành (B'N = DM, B'N//DM) 

=> MN ∩ B'D = O là trung điểm của mỗi đoạn nên O cũng là trung điểm của đường chéo A'C.

Vậy thiết diện tạo bởi mặt (A'MN) và hình chóp là hình bình hành A'NCM.

Ta có: 

Cách 1:

Thể tích phần chứa C' là

Cách 2: Áp dụng công thức tính nhanh

Gọi thể tích phần chứa C' là V'.

Ta có:

Cách 3: Nhận xét nhanh do đa diện chứa C' đối xứng với đa diện không chứa C' qua O nên thể tích của hai phần này bằng nhau, suy ra 

3 tháng 3 2017

Đáp án là C

Ta có 

Khi đó thể tích khối hộp

Ta có  giao tuyến của (A'MN) và (C'D'DC) là C'M

Ta có  giao tuyến của (A'MN) và (B'C'CB) là CN 

Suy ra AMC'N là hình bình hành

Gọi O là tâm hình hộp.  Ta có phép đối xứng tâm O biến hình đa diện C'CDMBAN thành hình đa diện AA'B'ND'C'M

20 tháng 5 2017

Khối đa diện

Khối đa diện

10 tháng 1 2017

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giả sử (AEF) cắt CC’ tại I. Khi đó ta có AE// FI, AF // EI nên tứ giác AEIF là hình bình hành. Trên cạnh CC’ lấy điểm J sao cho CJ = DF. Vì CJ song song và bằng DF nên JF song song và bằng CD. Do đó tứ giác CDFJ là hình chữ nhật. Từ đó suy ra FJ song song và bằng AB. Do đó AF song song và bằng BJ. Vì AF cũng song song và bằng EI nên BJ song song và bằng EI.

Từ đó suy ra IJ = EB = DF = JC = c/3

Ta có

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Nên V H = V A . BCIE + V A . DCIF

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vì thể tích khối hộp chữ nhật ABCD.A’B’C’D’ bằng abc nên

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đó suy ra Giải sách bài tập Toán 12 | Giải sbt Toán 12

20 tháng 5 2017

Khối đa diện

Khối đa diện

6 tháng 12 2017

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Thể tích khối chóp M.AB’C bằng thể tích khối chóp B’AMC. Ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó

Giải sách bài tập Toán 12 | Giải sbt Toán 12

6 tháng 6 2019

Đáp án C

13 tháng 10 2019

Chọn D

20 tháng 6 2017

Đáp án A

6 tháng 4 2017

Chọn D.

Gọi H là trung điểm của cạnh AD. Kẻ HI vuông góc với A'D tại I. Khi đó d(B,(A'DCB')) = d(A,(A'DCB')) = 2d(H,(A'DCB')) = 2HI.