K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 3 2023

Khẳng định thứ (III) kia chính xác là gì nhỉ? Chắc chắn 30G là ko hợp lý rồi

26 tháng 3 2023

3D G

17 tháng 2 2021

1/ \(\overrightarrow{AM}=3\overrightarrow{AM}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}\)

\(\Leftrightarrow2\overrightarrow{AM}+3\overrightarrow{MG}=\overrightarrow{0}\)

\(\Leftrightarrow2\overrightarrow{AM}+3\overrightarrow{MA}+3\overrightarrow{AG}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{AM}=3\overrightarrow{AG}\)

Ban tu ket luan

2/ Bạn coi lại đề bài, đẳng thức kia có vấn đề. 2k-1IB??

17 tháng 2 2021

\(\overrightarrow{IA}+2k-1+\overrightarrow{IB}+k\overrightarrow{IC}+\overrightarrow{ID}=0\)

9 tháng 7 2017

Giải bài 2 trang 7 sgk Hình học 11 | Để học tốt Toán 11

+ Ta có :

Giải bài 2 trang 7 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 2 trang 7 sgk Hình học 11 | Để học tốt Toán 11 với B’ là điểm thỏa mãn Giải bài 2 trang 7 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 2 trang 7 sgk Hình học 11 | Để học tốt Toán 11 với C’ là điểm thỏa mãn Giải bài 2 trang 7 sgk Hình học 11 | Để học tốt Toán 11

Vậy Giải bài 2 trang 7 sgk Hình học 11 | Để học tốt Toán 11 (hình vẽ).

Giải bài 2 trang 7 sgk Hình học 11 | Để học tốt Toán 11 ⇔ D đối xứng với G qua A (hình vẽ).

25 tháng 10 2023

a: ABCD.A'B'C'D là hình hộp chữ nhật

=>AA'//DD'//BB'//CC'

AA'//CC'

=>AA'//(CC'D'D)

B'B//D'D

=>B'B//(CC'D'D)

mà AA'//(CC'D'D)

và A'A và B'B cùng thuộc mp(AA'B'B)

nên (AA'B'B)//(CC'D'D)

b: Xét tứ giác ADC'B' có

AD//B'C'

AD=B'C'

Do đó: ADC'B' là hình bình hành

=>AB'//DC'

=>AB'//(C'BD)(1)

Xét tứ giác BDD'B' có

BB'//DD'

BB'=D'D

Do đó: BDD'B' là hình bình hành

=>BD//B'D'

=>B'D'//(C'BD)(2)

Từ (1) và (2) suy ra (C'BD)//(AB'D')

c: Gọi G là trọng tâm của ΔABC

Xét ΔBAC có

BO là đường trung tuyến

G là trọng tâm

Do đó: B,O,G thẳng hàng và \(BG=\dfrac{2}{3}BO\)

Gọi M là giao điểm của AG với BC; M' là giao điểm của A'G' với B'C'

Xét ΔABC có

G là trọng tâm

M là giao điểm của AG với BC

Do đó: M là trung điểm của BC và \(AG=\dfrac{2}{3}AM\)

Xét ΔA'B'C' có

G' là trọng tâm

A'G' cắt B'C' tại M'
Do đó: M' là trung điểm của B'C'

Xét ΔABM và ΔA'B'M' có

AB=A'B'

\(\widehat{ABM}=\widehat{A'B'M'}\)

BM=B'M'

Do đó: ΔABM=ΔA'B'M'

=>AM=A'M'

Xét hình thang BCC'B' có

M,M' lần lượt là trung điểm của CB,C'B'

=>MM' là đường trung bình

=>MM'//BB'//CC'

=>MM'//AA'

Xét tứ giác AA'M'M có

MM'//AA'

AM=A'M'

Do đó: AA'M'M là hình bình hành

=>AM//A'M'

=>AG//A'G'

=>A'G'//(ABCD)

31 tháng 3 2017

undefined

- Dựng hình bình hành ABB'G và ACC'G. Khi đó ta có: \(\overrightarrow{AG}=\overrightarrow{BB'}=\overrightarrow{CC'}\)

. Suy ra \(^T\overrightarrow{AG}\left(A\right)=G,^T\overrightarrow{AG}\left(B\right)=B',^T\overrightarrow{AG}\left(C\right)=C'\)

Do đó ảnh của tam giác ABC qua phép tịnh tiến theo vectơ \(\overrightarrow{AG}\) là tam giác GB'C'.

- Trên tia GA lấy điểm D sao cho A là trung điểm của GD. Khi đó ta có \(\overrightarrow{DA}=\overrightarrow{AG}\). Do đó, \(^T\overrightarrow{AG}\left(D\right)=A\).

31 tháng 3 2017

undefined

- Dựng hình bình hành ABB'G và ACC'G. Khi đó ta có: −−→AG=−−→BB′=−−→CC′AG→=BB′→=CC′→

. Suy ra T−−→AG(A)=G,T−−→AG(B)=B′,T−−→AG(C)=C′TAG→(A)=G,TAG→(B)=B′,TAG→(C)=C′

Do đó ảnh của tam giác ABC qua phép tịnh tiến theo vectơ −−→AGAG→ là tam giác GB'C'.

- Trên tia GA lấy điểm D sao cho A là trung điểm của GD. Khi đó ta có −−→DA=−−→AGDA→=AG→. Do đó, T−−→AG(D)=ATAG→(D)=A.

AH
Akai Haruma
Giáo viên
3 tháng 2 2018

Lời giải:

Coi \(ABCD\) là mặt đáy.

Trên tia đối của tia $BA$ lấy $T$ sao cho $BT=BA$. Khi đó:

\(\overrightarrow {AB}=\overrightarrow{BT}; \overrightarrow{CT}=\overrightarrow{DB}\)

Ta có:

\(\overrightarrow{OM}=\frac{1}{2}(\overrightarrow{a}-\overrightarrow{b})\)

\(\Leftrightarrow 2\overrightarrow{OM}=\overrightarrow{AB}-\overrightarrow{BC}=\overrightarrow{BT}-\overrightarrow {BC}\)

\(\Leftrightarrow 2\overrightarrow{OM}=\overrightarrow{CT}=\overrightarrow{DB}\Leftrightarrow \overrightarrow{OM}=\frac{1}{2}\overrightarrow{DB}\)

Lấy $K$ là trung điểm của $BB'$

Vì $O$ là tâm hình hộp nên $O$ là trung điểm $B'D$

\(\Rightarrow OK\parallel BD; OK=\frac{1}{2}BD\)

\(\Rightarrow \overrightarrow{OK}=\frac{1}{2}{DB}\)

Do đó \(K\equiv M\) hay M là trung điểm của $BB'$