K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2023

GIÚP MIK VS

 

26 tháng 11 2023

a: Xét tứ giác ABCD có

M là trung điểm chung của AC và BD

nên ABCD là hình bình hành

Hình bình hành ABCD có \(\widehat{BAD}=90^0\)

nên ABCD là hình chữ nhật

b: ABCD là hình chữ nhật

=>AD//BC và AD=BC

AD//BC

D\(\in\)AE

Do đó: ED//BC

AD=BC

ED=DA

Do đó: BC=ED

Xét tứ giác EDBC có

ED//BC

ED=BC

Do đó: EDBC là hình bình hành

=>EB cắt DC tại trung điểm của mỗi đường

mà I là trung điểm của DC

nên I là trung điểm của EB

=>IE=IB

c: Xét ΔACK có

H,M lần lượt là trung điểm của AK,AC

=>HM là đường trung bình của ΔACK

=>HM//CK

=>CK//DB

Xét ΔDAK có

DH là đường cao

DH là đường trung tuyến

Do đó:ΔDAK cân tại D

=>DA=DK

mà DA=BC(ABCD là hình chữ nhật)

nên DK=BC

Xét tứ giác BKCD có CK//BD

nên BKCD là hình thang

Hình thang BKCD có CB=DK

nên BKCD là hình thang cân

26 tháng 11 2023

có hình không bạn

 

a: Xét tứ giác ABCD có

M là trung điểm chung của AC và BD

góc BAD=90 độ

=>ABCD là hình chữ nhật

b: Xét tứ giác EDBC có

ED//BC

ED=BC

=>EDBC là hình bình hành

=>Eb cắt CD tại trung điểm của mỗi đường

=>ID=IB

9 tháng 3 2018

a) DDAE = DBAF (c.g.c)

⇒   D A E ^ = B A F ^  và AE = AF

Mà E A D ^ + E A B ^ = 90 0   = >   E A B ^ + B A F ^ = 90 0  

Þ DAEF vuông cân tại A.

b) DEAF vuông cân nên IA = IE = FI (1); DCFE vuông có IC là đường trung tuyến Þ IE = IC = IF (2);

Từ (1) và (2) suy ra Þ IA = IC nên I thuộc trung trực của AC hay I thuộc BD.

c) Do K đối xứng với A qua I nên I là trung điểm của AK.

Mà I là trung điểm của EF(gt) nên AFKE là hình bình hành, DAEF vuông cân tại A nên AI ^ EF.

Vậy AFKE là hình vuông.

26 tháng 12 2021

a, Xét 2 tam giác vuông ΔADE và ΔABF có:

AD = AB (ABCD là hình vuông); DE = BF (gt)

⇒ ΔADE = ΔABF (2 cạnh góc vuông)

⇒ AE = AF (1) và ˆDAEDAE^ = ˆBAFBAF^ 

mà ˆDAEDAE^ + ˆBAEBAE^ = 90o90o

⇒ ˆBAFBAF^ + ˆBAEBAE^ = 90o90o

⇒ ˆEAFEAF^ = 90o90o (2)

Từ (1) và (2) suy ra ΔEAF vuông cân (đpcm)

b, ABCD là hình vuông ⇒ BA = BC và DA = DC

⇒ BD là đường trung trực của AC (3)

ΔEAF vuông cân tại A có AI là trung tuyến ứng với cạnh huyền 

⇒ AI = 1212EF

ΔCEF vuông tại C có CI là trung tuyến ứng với cạnh huyền

⇒ CI = 1212EF

⇒ CI = AI ⇒ I thuộc đường trung trực của AC (4)

Từ (3) và (4) suy ra: I thuộc BD (đpcm)

d, Tứ giác AEKF có 2 đường chéo AK, EF cắt nhau tại I là trung điểm mỗi đường

⇒ AEKF là hình bình hành

mà AE = AF và ˆEAFEAF^ = 90o90o

⇒ AEKF là hình vuông (đpcm)

27 tháng 10 2023

a: Xét tứ giác ABCD có

M là trung điểm chung của AC và BD

nên ABCD là hình bình hành

Hình bình hành ABCD có \(\widehat{BAD}=90^0\)

nên ABCD là hình chữ nhật

b: ABCD là hình chữ nhật

=>AD//BC và AD=BC

AD=BC

AD=DE

Do đó: DE=CB

Xét tứ giác EDBC có

ED//BC

ED=BC

Do đó: EDBC là hình bình hành

=>EB cắt DC tại trung điểm của mỗi đường

=>I là trung điểm của EB

=>IE=IB

c: Xét ΔACK có

H,M lần lượt là trung điểm của AK,AC

=>HM là đường trung bình

=>HM//CK

=>CK//BD

Xét ΔDAK có

DH là đường cao, là đường trung tuyến

Do đó: ΔDAK cân tại D

=>DA=DK

mà DA=BC

nên DK=BC

Xét tứ giác BKCD có CK//BD

nên BKCD là hình thang

mà BC=KD

nên BKCD là hình thang cân

27 tháng 10 2023

Cảm ơn bạn