Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình đường thẳng qua O và song song AB có dạng: x−y=0x−y=0
⇒⇒ Tọa độ M là nghiệm của hệ: {x+3y−6=0x−y=0{x+3y−6=0x−y=0 ⇒M(32;32)⇒M(32;32)
Phương trình đường thẳng BC qua M, nhận (1;1)(1;1) là 1 vtpt có dạng:
1(x−32)+1(y−32)=0⇔x+y−3=01(x−32)+1(y−32)=0⇔x+y−3=0
Tọa độ B là nghiệm của hệ: {x−y+5=0x+y−3=0{x−y+5=0x+y−3=0 ⇒B⇒B
M là trung điểm BC ⇒⇒ tọa độ C
O là trung điểm AC ⇒⇒ tọa độ A
O là trung điểm BD
AB đi qua E và vuông góc BC nên nhận (1;-1) là 1 vtpt
Phương trình AB:
\(1\left(x+1\right)-1\left(y-1\right)=0\Leftrightarrow x-y+2=0\)
Tọa độ B là nghiệm: \(\left\{{}\begin{matrix}x-y+2=0\\x+y+4=0\end{matrix}\right.\) \(\Rightarrow B\left(-3;-1\right)\)
Đường thẳng d qua M và song song AB có pt:
\(1\left(x+1\right)-1\left(y+1\right)=0\Leftrightarrow x-y=0\)
Gọi N là giao điểm d và BC \(\Rightarrow N\) là trung điểm BC
Tọa độ N là nghiệm: \(\left\{{}\begin{matrix}x-y=0\\x+y-4=0\end{matrix}\right.\) \(\Rightarrow N\left(2;2\right)\Rightarrow C\left(7;5\right)\)
Đường thẳng AD qua M và song song BC có pt:
\(1\left(x+1\right)+1\left(y+1\right)=0\Leftrightarrow x+y+2=0\)
A là giao điểm AB và AD nên tọa độ là nghiệm: \(\left\{{}\begin{matrix}x-y+2=0\\x+y+2=0\end{matrix}\right.\) \(\Rightarrow A\left(-2;0\right)\)
\(\overrightarrow{AB}=\overrightarrow{DC}\Rightarrow\) tọa độ D
I là trung điểm AC \(\Rightarrow C\left(2;-2\right)\)
\(\Rightarrow\overrightarrow{CM}=\left(2;-1\right)\Rightarrow\) đường thẳng BC có dạng:
\(1\left(x-2\right)+2\left(y+2\right)=0\Leftrightarrow x+2y+2=0\)
Đường thẳng AB qua A và vuông góc BC nên nhận \(\left(2;-1\right)\) là 1 vtpt
Phương trình AB:
\(2\left(x+1\right)-1\left(y-2\right)=0\Leftrightarrow2x-y+4=0\)
B là giao điểm AB và BC nên tọa độ là nghiệm:
\(\left\{{}\begin{matrix}x+2y+2=0\\2x-y+4=0\end{matrix}\right.\) \(\Rightarrow B\left(...\right)\)
I là trung điểm BD \(\Rightarrow\left\{{}\begin{matrix}x_D=2x_I-x_B=...\\y_D=2y_I-y_B=...\end{matrix}\right.\)
\(d\left(I;AB\right)=\frac{\left|\frac{1}{2}+2\right|}{\sqrt{1^2+\left(-2\right)^2}}=\frac{\sqrt{5}}{2}\Rightarrow AD=2d\left(I;AB\right)=\sqrt{5}\)và \(AB=2AD=2\sqrt{5}\)
Do đó \(IA=IB=IC=ID=\frac{1}{2}AC=\frac{5}{2}\)
Gọi \(\omega\) là đường tròn tâm I, bán kính \(R=IA\) thế thì \(\omega\) có phương trình \(\left(x-\frac{1}{2}\right)^2+y^2=\frac{25}{4}\)
Do vậy tọa độ của A, B là nghiệm của hệ :
\(\begin{cases}\left(x-\frac{1}{2}\right)^2+y^2=\frac{25}{4}\\x-2y+2=0\end{cases}\)
Giải hệ thu được \(A\left(-2;0\right);B\left(2;2\right)\) (do A có hoành độ âm), từ đó , do I là trung điểm của AC và BD suy ra \(C\left(3;0\right);D\left(-1;-2\right)\)
Để giải bài toán này, ta cần sử dụng các kiến thức về hình học phẳng và đường thẳng.
Trước tiên, ta xác định tọa độ của điểm A. Vì AB là đường chéo của hình vuông nên ta có thể sử dụng định lí Pythagoras trong tam giác vuông ABD để tính độ dài cạnh của hình vuông, rồi suy ra tọa độ của điểm A.
Với AB: x-y+4=0, ta có hai điểm A thỏa mãn điều kiện này: A(x,y)=(y-4,y) và A'(x',y')=(x'+4,x'). Vì độ dài cạnh của hình vuông là xác định nên ta chỉ cần tìm được một điểm trên cạnh AB, chẳng hạn A, để suy ra tọa độ của các điểm còn lại.
Giả sử ta chọn A(y-4,y), ta có
Tọa độ của B là (y, y-4) (vì AB là đường chéo)Tọa độ của C là (y-4, -y) (vì ABCD là hình vuông)Tọa độ của D là (-y, y-4) (vì ABCD là hình vuông)Ta dễ dàng tính được tọa độ của M và N:
Tọa độ của M là ((y+y-4)/2, (y-4)/2) = (y-2, -2)Tọa độ của N là (x, 2x+6) với điểm N thuộc đường thẳng d: x-2y-6=0 và N có hoành độ dương. Thay x-2y-6=0 vào ta có x=2y+6, suy ra tọa độ của N là (2y+6, 2x+6) = (2y+6, 4y+18)Tiếp theo, ta tính khoảng cách d giữa đường thẳng AB và điểm H. Theo công thức, ta có d(H, AB) = |Ax + By + C| / sqrt(A^2 + B^2), với (A, B, C) là vector pháp tuyến của đường thẳng AB.
Vì AB: x-y+4=0 nên vector pháp tuyến của AB là (1, -1). Điểm H là giao điểm của hai đường thẳng AM và BN nên ta dễ dàng tính được tọa độ của H là ((y-2)/2, (y-4)/2). Thay vào công thức tính khoảng cách ta có d(H, AB) = |y-2 + 2y-4 + 4| / sqrt(1+1) = 8sqrt(2)/2 = 4sqrt(2).
Vậy, tọa độ các đỉnh của hình vuông là:
A(y-4, y)B(y, y-4)C(y-4, -y)D(-y, y-4)Và tọa độ của M và N là:
M(y-2, -2)N(2y+6, 4y+18) với y > 0Khoảng cách giữa đường thẳng AB và điểm H là 4sqrt(2).