Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: Chứng minh góc EFM = 900 ?
Có DF = CK => DF + FK = CK + FK => DK = CF. Xét \(\Delta\)EKF có ^EKF = 900
=> ME2 = KE2 + KM2 (ĐL Pytagoras). Tương tự: KE2 = DE2 + DK2 ; KM2 = CK2 + CM2
Do đó ME2 = DE2 + DK2 + CK2 + CM2. Thay CK = DF, DK = CF ta được:
ME2 = (DE2 + DF2) + (CF2 + CM2) = FE2 + FM2 (ĐL Pytagoras)
Áp dụng ĐL Pytagoras đảo vào \(\Delta\)EMF suy ra \(\Delta\)EMF vuông tại F => ^EFM = 900.
Cho mình sửa dòng thứ 2: "Xét \(\Delta\)EKM có ^EKM = 900 "
a.- Xét △KDC có:
DC//BF (ABCD là hình bình hành).
=>\(\dfrac{CK}{KF}=\dfrac{DK}{BK}\) (định lí Ta-let). (1)
- Xét △KDM có:
MD//BD (ABCD là hình bình hành).
=>\(\dfrac{DK}{BK}=\dfrac{MK}{CK}\) (định lí Ta-let). (2)
- Từ (1) và (2) suy ra:
\(\dfrac{CK}{KF}=\dfrac{KM}{CK}\). Vậy \(CK^2=KM.KF\)
b. - Xét △KDC có:
DC//BF (ABCD là hình bình hành).
=> \(\dfrac{DK}{BK}=\dfrac{CK}{CF}\) (định lí Ta-let). (3)
- Xét △KDM có:
MD//BD (ABCD là hình bình hành).
=>\(\dfrac{DK}{BK}=\dfrac{MK}{CM}\) (định lí Ta-let). (4)
- Từ (3) và (4) suy ra: \(\dfrac{CK}{CF}=\dfrac{MK}{CM}\)
=>\(\dfrac{CK}{CF}=\dfrac{MK}{CM}=\dfrac{CK+MK}{CF+CM}\) (t/c tỉ lệ thức).
=>\(\dfrac{CK}{CF}=\dfrac{CM}{CF+CM}\)
=>\(CK=\dfrac{CM.CF}{CF+CM}\)
=>\(\dfrac{1}{CK}=\dfrac{CF+CM}{CM.CF}\)
=>\(\dfrac{1}{CK}=\dfrac{1}{CF}+\dfrac{1}{CM}\)
c.
Do \(\widehat{DBC}=\widehat{CBE}\Rightarrow BC\) là phân giác trong góc \(\widehat{DBE}\) trong tam giác BDE
Theo định lý phân giác: \(\dfrac{BE}{BD}=\dfrac{CE}{CD}\) (1)
Trong tam giác MCD, do \(AF||CD\) nên theo định lý Talet: \(\dfrac{AF}{CD}=\dfrac{MF}{MC}\)
Trong tam giác MCE, do \(BF||CE\) nên theo định lý Talet: \(\dfrac{BF}{CE}=\dfrac{MF}{MC}\)
\(\Rightarrow\dfrac{AF}{CD}=\dfrac{BF}{CE}\Rightarrow\dfrac{CE}{CD}=\dfrac{BF}{AF}\) (2)
(1);(2) \(\Rightarrow\dfrac{BF}{AF}=\dfrac{BE}{BD}\) (đpcm)
nhắn tin link facebook cho mk mk làm ra giấy xog mk chụp gửi cho
viết ra đây lâu lắm
với cả ở đây ko gửi ảnh đc
thế nhé :))))
sao ko chứng minh luôn tính chất đường trung tuyến trong tam giác vuong luôn đi sao phải dài dòng thế