Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔBNC có
CI,BK là đường cao
CI cắt BK tại E
Do đó: E là trực tâm của ΔBNC
=>NE\(\perp\)BC
mà AB\(\perp\) BC
nên NE//AB
Xét ΔKAB có
N là trung điểm của KA
NE//AB
Do đó; E là trung điểm của BK
=>EB=EK
Ban tu ve hinh nha
a) Xet \(\Delta BHC\perp.tai.H\) co
\(\hept{\begin{cases}K.la.trung.diem.BH\\N.la.trung.diem.HC\end{cases}\Rightarrow KN.la.duong.trung.binh}\)
=> KN // BC va KN=1/2 BC
Xet hinh chu nhat ABCD co BC//,=AD lai co M la trung diem AD => \(AM=\frac{1}{2}AD=\frac{1}{2}BC=KN\) (1)
ma \(\hept{\begin{cases}M\in AD\\AD//BC\\KN//BC\end{cases}\Rightarrow AM//KN}\) (2)
Tu (1) va (2) suy ra AMNK la hinh binh hanh
b) theo phan a ta co \(AK//MN\) (3)
co \(\hept{\begin{cases}KN//BC\left(cmt\right)\\BC\perp AB\left(ABCD.la.hinh.chu.nhat\right)\end{cases}=>KN\perp AB\left(quan.he.tu.vuong.goc.den.song.song\right)}\)
Xet \(\Delta ABN\) co \(\hept{\begin{cases}BH\perp AN\left(gt\right)\\KN\perp AB\left(cmt\right)\end{cases}\Rightarrow K.la.truc}.tam.\Delta ABN\)
Suy ra \(AK\perp BN\) (3)
Tu (3) va (4) ta co \(MN\perp BN\) DPCM
Chuc ban hoc tot
Gọi N là trung điểm của BH
=> MN là đường trung ình của tam giác ABH
=>MN//AB, MN=1/2 AB
Mà AB=CD và AB//CD
=>MN//CD, MN = 1/2 CD
=> MNCK là hình bình hành
=> NC//MK (1)
Ta có: MN //AB
AB vuông góc với BC
=> MN vuông góc với BC tại E (E thuộc BC)
Tam giác BCM có BH và ME là đường cao và chúng cắt nhau tại N
=> CN vuông góc với BM (2)
Từ (1) và (2) suy ra:
BM vuông góc với MK (đpcm)
Từ K, D hạ đường vuông góc KN, DP xuống AC
Xét tam giác BMK, ta có:
BK^2=BC^2+CK^2 = BC^2+CD^2/4 (1)
BM^2=BH^2+MH^2 = BH^2+ AH^2/4 (2)
MK^2=MN^2+NK^2=MN^2+BH^2/4 (3)
Ta có MN= MH-NH = AH/2-NH=AH/2-(CN-CH)=AH/2-AH/2+CH =CH (Do CN=CP/2=AH/2)
=>MN =CH, thay vào (3)
=> MK^2 = CH^2 +BH^2/4 (4)
Để c/m ^BMK=90o, ta c/m BK^2 =BM^2 +MK^2 (*)
Thay (1), (2), (4) vào (*), , ta được
BC^2+CD^2/4= BH^2+AH^2/4+CH^2+BH^2/4 (**)
Do BC^2= BH^2+CH^2
(**) => CD^2/4= AH^2/4+BH^2/4
=> CD^2=AH^2+BH^2
=> AB^2 = AH^2+BH^2 , đúng do tam giác AHB vuông tại H
Vậy ^BMK =90o
hay BMvuông góc vớ Mk