K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2023

Xét ΔBNC có

CI,BK là đường cao

CI cắt BK tại E

Do đó: E là trực tâm của ΔBNC

=>NE\(\perp\)BC

mà AB\(\perp\) BC

nên NE//AB

Xét ΔKAB có

N là trung điểm của KA

NE//AB
Do đó; E là trung điểm của BK

=>EB=EK

15 tháng 9 2019

Ban tu ve hinh nha

a) Xet \(\Delta BHC\perp.tai.H\) co 

\(\hept{\begin{cases}K.la.trung.diem.BH\\N.la.trung.diem.HC\end{cases}\Rightarrow KN.la.duong.trung.binh}\)

=> KN // BC va KN=1/2 BC

Xet hinh chu nhat ABCD co BC//,=AD   lai co M la trung diem AD => \(AM=\frac{1}{2}AD=\frac{1}{2}BC=KN\) (1)

 ma \(\hept{\begin{cases}M\in AD\\AD//BC\\KN//BC\end{cases}\Rightarrow AM//KN}\) (2)

Tu (1) va (2) suy ra AMNK la hinh binh hanh

b) theo phan a ta co \(AK//MN\)  (3)

co \(\hept{\begin{cases}KN//BC\left(cmt\right)\\BC\perp AB\left(ABCD.la.hinh.chu.nhat\right)\end{cases}=>KN\perp AB\left(quan.he.tu.vuong.goc.den.song.song\right)}\)

Xet \(\Delta ABN\) co \(\hept{\begin{cases}BH\perp AN\left(gt\right)\\KN\perp AB\left(cmt\right)\end{cases}\Rightarrow K.la.truc}.tam.\Delta ABN\)

Suy ra \(AK\perp BN\) (3)

Tu (3) va (4) ta co \(MN\perp BN\)     DPCM

Chuc ban hoc tot

15 tháng 9 2019

Tài trợ cái hình:

A B C D H M N K

Còn ý tưởng thì giống Upin & Ipin

18 tháng 9 2016

A B C D H M K N E

Gọi N là trung điểm của BH

=> MN là đường trung ình của tam giác ABH

=>MN//AB, MN=1/2 AB

Mà AB=CD và AB//CD

=>MN//CD, MN = 1/2 CD

=> MNCK là hình bình hành

=> NC//MK (1)

Ta có: MN //AB

AB vuông góc với BC

=> MN vuông góc với BC tại E (E thuộc BC)

Tam giác BCM có BH và ME là đường cao và chúng cắt nhau tại N

=> CN vuông góc với BM (2)

Từ (1) và (2) suy ra:

BM vuông góc với MK (đpcm)

 

2 tháng 11 2021

tuyệt

26 tháng 5 2017


Từ K, D hạ đường vuông góc KN, DP xuống AC 

Xét tam giác BMK, ta có: 

BK^2=BC^2+CK^2 = BC^2+CD^2/4 (1) 
BM^2=BH^2+MH^2 = BH^2+ AH^2/4 (2) 
MK^2=MN^2+NK^2=MN^2+BH^2/4 (3) 

Ta có MN= MH-NH = AH/2-NH=AH/2-(CN-CH)=AH/2-AH/2+CH =CH (Do CN=CP/2=AH/2) 

=>MN =CH, thay vào (3) 
=> MK^2 = CH^2 +BH^2/4 (4) 

Để c/m ^BMK=90o, ta c/m BK^2 =BM^2 +MK^2 (*) 

Thay (1), (2), (4) vào (*), , ta được 

BC^2+CD^2/4= BH^2+AH^2/4+CH^2+BH^2/4 (**) 
Do BC^2= BH^2+CH^2 

(**) => CD^2/4= AH^2/4+BH^2/4 
=> CD^2=AH^2+BH^2 
=> AB^2 = AH^2+BH^2 , đúng do tam giác AHB vuông tại H 

Vậy ^BMK =90o

hay BMvuông góc vớ Mk