K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1,Cho hình thang vuông ABCD vuông góc tại A và D,đáy lớn CD gấp 3 lần đáy nhỏ AB. Kéo dài DA và CB cắt nhau tại M.a,So sánh diện tích hai tam giác ABC và ADCb,So sánh diện tích hai tam giác ABM và ACMc,Biết diện thích hình thang ABCD bằng 64 cm2. Tính diện tích tam giác MBA. 2,Trên hình vẽ ABCD là hình thang.a,Hãy tìm các hình tam giác có diện tích bằng nhaub,Diện tích hình thang 16m2 và hiệu hai đáy của nó bằng...
Đọc tiếp

1,Cho hình thang vuông ABCD vuông góc tại A và D,đáy lớn CD gấp 3 lần đáy nhỏ AB. Kéo dài DA và CB cắt nhau tại M.
a,So sánh diện tích hai tam giác ABC và ADC
b,So sánh diện tích hai tam giác ABM và ACM
c,Biết diện thích hình thang ABCD bằng 64 cm2. Tính diện tích tam giác MBA. 
2,Trên hình vẽ ABCD là hình thang.
a,Hãy tìm các hình tam giác có diện tích bằng nhau
b,Diện tích hình thang 16m2 và hiệu hai đáy của nó bằng 4m. Tính độ dài mỗi đáy hình thang. Biết rằng khi giảm đáy lớn 1m thì diện tích hình thang giảm 1m2.
3,Cho tam giác ABC. P là trung điểm của cạnh BC; nối AP,trên AP lấy điểm M,N sao cho AM = MN = NP. Biết diện tích tam giác NPC = 60 cm2
a,Tính diện tích các tam giác AMC,MNC,ABP
b,Kéo dài BN cắt AC ở Q. Chứng tỏ rằng Q là trung điểm của cạnh AC.
4,Cho tam giác ABC có MC = 1/4 BC,BK là đường cao của tam giác ABC,MH là đường cao của tam giác AMC có AC là đáy chung. So sánh độ dài BK và MH?

5
13 tháng 12 2016

Ko biết, chắt bàng 1.3,2.3,3.5,4.17

11 tháng 1 2017

KO BIET LAM

Cho hình thang vuông ABCD , AD= 6cm ; DC = 12cm ; AB = 2/3  DC.            a)     Tính diện tích hình thang  ABCD.                                      b)    Kéo dài cạnh bên AD và CB, chúng gặp nhau tại M . Tính độ dài cạnh AM.   Cho hình chữ nhật ABCD có diện tích 360cm2. Trên cạnh AB lấy 2 điểm M và N sao cho AM=1/2AB, AN=1/3AB. Gọi giao điểm của DM và CN là O. Tính diện tích tam giác MON. Cho hình chữ nhật ABCD, trên cạnh BC...
Đọc tiếp

Cho hình thang vuông ABCD , AD= 6cm ; DC = 12cm ; AB = 2/3  DC.

            a)     Tính diện tích hình thang  ABCD.                          

            b)    Kéo dài cạnh bên AD và CB, chúng gặp nhau tại M . Tính độ dài cạnh AM.

   Cho hình chữ nhật ABCD có diện tích 360cm2. Trên cạnh AB lấy 2 điểm M và N sao cho AM=1/2AB, AN=1/3AB. Gọi giao điểm của DM và CN là O. Tính diện tích tam giác MON.

 Cho hình chữ nhật ABCD, trên cạnh BC lấy điểm M sao cho BM = MC, trên cạnh CD lấy N sao cho NC = 1/3xDC. Hãy so sánh diện tích hình tam giác AMN với diện tích hình tam giác ADN

  HCN có diện tích 360 cm2.Tính diện tích HCN với số đo chiều dài và chiều rộng tương ứng là 3/2số đo HCN đã cho

   Cho hình tam giác ABC. Trên AB lấy điểm M sao cho AM = 1/3 AB. Trên AC lấy điểm N sao cho AN = 1/4 AC. Nối M với C, nối N với B cắt nhau tại O. Hãy so sánh diện tích tam giác BOC và diện tich tam giác ABC.

14
30 tháng 4 2016

1) 

a) Cạnh AB là : 12 x 2/3 = 8 (cm)

Diện tích ABCD là : (8 + 12) : 2 x 6 = 60 (cm2)

b) -Xét tam giác ABC đáy AB và DBC đáy CD có chiều cao bằng nhau = 6cm mà đáy AB = 2/3 CD => S_ABC = 2/3 S_DBC.

Vẫn xét 2 tam giác ABC và DBC chung đáy BC vì S_ABC = 2/3 S_DBC => chiều cao AK = 2/3 DH.

-Xét tam giác AMC và DMC chung đáy MC mà chiều cao AK = 2/3 DH => S_AMC = 2/3 S_DMC. Mà S_DMC lớn hơn S_AMC là :    12 x 6 : 2 = 36 (cm2)

S_AMC là : 36 : (3-2) x 2 = 72 (cm2) (Toán Hiệu - Tỉ)

Xét tam giác AMC đáy AM, chiều cao CD => AM = 72 x 2 : 12 = 12 (cm)

2) 

9142399

Ta có:

MN = 1/2 AB - 1/3 AB = 1/6 AB

Xét tam giác NMD và MCD có chiều cao = chiều rộng hình chữ nhật mà đáy NM = 1/6 CD => S_NMD = 1/6 S_MCD. Mà S_MCD = 360 : 2 = 180 (cm2) => S_NMD = 180 : 6 = 30 (cm2)

Mặt khác 2 tam giác này chugn đáy MD => Chiều cao tam giác NMD đỉnh N = 1/6 chiều cao tam giác MCD đỉnh C

Xét tam giác NMD và NMC chung đáy NM chiều cao bằng nhau => S_NMD = S_NMC = 30 (cm2)

Xét tam giác NMO và MCO có chung đáy MO chiều cao tam giác NMO = 1/6 chiều cao MCO => S_NMO = 1/6 S_MCO

Vậy diện tích NMO là : 30 : (1 + 6) = 30/7 (cm2

3) 

AB=a  ; BC=b

Diện tích hình chữ nhật:   S=a.b

S_ADN= 2/3a x b : 2 = 1/3 ab = 1/3S

Ta có:

S_AMN = (S_AMC + S_ANC) – S_MCN= (MC x AB :2  + NC x AD : 2) – (NC x MC : 2)

= (1/2b x  a : 2    +  1/3a x b : 2) – (1/3a x 1/2b : 2) 

=     ¼ S              +       1/6S        -      1/12S 

= 5/12 S – 1/12 S = 4/12 S = 1/3 S

Gọi S=a x b

S_tăng = 3/2a x 3/2b = 9/4 S

Diện tích mới:  360 x 9/4 = 810 (cm2)

Nối A với O. 

Ta có:  SABN = 1/3 SBNC  nên đường cao kẻ từ A và C xuống NB có tỉ lệ 1/3

Suy ra  SABO = 1/3 SBOC (chung đáy OB)

Tương tự:

SAMC = 1/2SBMC nên dường cao kẻ từ A và B xuống MC có tỉ lệ 1/2

Suy ra      SAOC = 1/2 SBOC (chung đáy OC)

Từ đó ta có:  SAOC + SAOB = (1/3+1/2)SBOC = 5/6 SBOC

SAOC + SAOB  có 5 phần thì SBOC có 6 phần và SABC có (5+6) 11 phần

Vậy:     AOCB = 6/11 SABC

  
30 tháng 4 2016

a) Cạnh AB là : 12 x 2/3 = 8 (cm)

Diện tích ABCD là : (8 + 12) : 2 x 6 = 60 (cm2)

b) -Xét tam giác ABC đáy AB và DBC đáy CD có chiều cao bằng nhau = 6cm mà đáy AB = 2/3 CD => S_ABC = 2/3 S_DBC.

Vẫn xét 2 tam giác ABC và DBC chung đáy BC vì S_ABC = 2/3 S_DBC => chiều cao AK = 2/3 DH.

-Xét tam giác AMC và DMC chung đáy MC mà chiều cao AK = 2/3 DH => S_AMC = 2/3 S_DMC. Mà S_DMC lớn hơn S_AMC là :    12 x 6 : 2 = 36 (cm2)

S_AMC là : 36 : (3-2) x 2 = 72 (cm2) (Toán Hiệu - Tỉ)

Xét tam giác AMC đáy AM, chiều cao CD => AM = 72 x 2 : 12 = 12 (cm)

2) 

9142399

Ta có:

MN = 1/2 AB - 1/3 AB = 1/6 AB

Xét tam giác NMD và MCD có chiều cao = chiều rộng hình chữ nhật mà đáy NM = 1/6 CD => S_NMD = 1/6 S_MCD. Mà S_MCD = 360 : 2 = 180 (cm2) => S_NMD = 180 : 6 = 30 (cm2)

Mặt khác 2 tam giác này chugn đáy MD => Chiều cao tam giác NMD đỉnh N = 1/6 chiều cao tam giác MCD đỉnh C

Xét tam giác NMD và NMC chung đáy NM chiều cao bằng nhau => S_NMD = S_NMC = 30 (cm2)

Xét tam giác NMO và MCO có chung đáy MO chiều cao tam giác NMO = 1/6 chiều cao MCO => S_NMO = 1/6 S_MCO

Vậy diện tích NMO là : 30 : (1 + 6) = 30/7 (cm2

3) 

AB=a  ; BC=b

Diện tích hình chữ nhật:   S=a.b

S_ADN= 2/3a x b : 2 = 1/3 ab = 1/3S

Ta có:

S_AMN = (S_AMC + S_ANC) – S_MCN= (MC x AB :2  + NC x AD : 2) – (NC x MC : 2)

= (1/2b x  a : 2    +  1/3a x b : 2) – (1/3a x 1/2b : 2) 

=     ¼ S              +       1/6S        -      1/12S 

= 5/12 S – 1/12 S = 4/12 S = 1/3 S

Gọi S=a x b

S_tăng = 3/2a x 3/2b = 9/4 S

Diện tích mới:  360 x 9/4 = 810 (cm2)

Nối A với O. 

Ta có:  SABN = 1/3 SBNC  nên đường cao kẻ từ A và C xuống NB có tỉ lệ 1/3

Suy ra  SABO = 1/3 SBOC (chung đáy OB)

Tương tự:

SAMC = 1/2SBMC nên dường cao kẻ từ A và B xuống MC có tỉ lệ 1/2

Suy ra      SAOC = 1/2 SBOC (chung đáy OC)

Từ đó ta có:  SAOC + SAOB = (1/3+1/2)SBOC = 5/6 SBOC

SAOC + SAOB  có 5 phần thì SBOC có 6 phần và SABC có (5+6) 11 phần

Vậy:     AOCB = 6/11 SABC

18 tháng 12 2023

Kẻ \(EH\perp BG\)\(CF\perp BG\)

Ta có: \(S_{ABD}=S_{GBC}=\dfrac{1}{2}.AB.AD=\dfrac{1}{2}.S_{ABCD}\)

\(S_{BAG}=\dfrac{1}{2}.AB.AG=\dfrac{1}{2}.AB.\dfrac{1}{2}AD=\dfrac{1}{4}.AB.AD=\dfrac{1}{2}S_{ABD}\)

\(S_{GEB}=\dfrac{1}{2}.AG.EB=\dfrac{1}{2}.AG.\dfrac{1}{2}.AB=\dfrac{1}{4}.AG.AB=\dfrac{1}{2}S_{ABG}\)

\(\Rightarrow S_{GEB}=\dfrac{1}{2}.\dfrac{1}{2}.\dfrac{1}{2}S_{ABCD}=\dfrac{1}{8}S_{ABCD}=\dfrac{1}{4}S_{GBC}\)

\(\Leftrightarrow\dfrac{1}{2}.EH.BG=\dfrac{1}{4}.\dfrac{1}{2}CF.BG\)

\(\Leftrightarrow EH=\dfrac{1}{4}CF\)

Lại có: \(S_{OBE}=\dfrac{1}{2}OB.EH=\dfrac{1}{2}OB.\dfrac{1}{4}CF=\dfrac{1}{4}S_{OBC}\)

Ta có: \(S_{CBE}=S_{OBE}+S_{OBC}=S_{OBE}+4S_{OBE}=5S_{OBE}\)

\(S_{CBE}=5.10=50\left(cm^2\right)\)

Mà \(S_{CBE}=\dfrac{1}{2}S_{CBA}=\dfrac{1}{4}S_{ABCD}\Rightarrow S_{ABCD}=200\left(cm^2\right)\)

Giải thích các bước giải:

a) Xét tam giác ABC và AMC có chung chiều cao hạ từ đỉnh C mà M là trung điểm AB nên AB = 2 x AM => S_ABC = 2 x S_AMC

Xét tam giác AMC với AMD có chung đáy AM, chiều cao hạ từ đỉnh D đáy AM = chiều cao từ đỉnh C đáy AM => S_AMC = S_AMD.

b) Nối AN và EN 

Xét các tam giác AMC và ANC đều = 1/4 diện tích hình bình hành = 15 cm2. Mặt khác 2 tam giác này có chung đáy AC => chiều cao hạ từ đỉnh M xuống đáy AC = chiều cao từ đỉnh N đáy AC.

Xét tam giác ENC và EMC chung đáy EC, chiều cao bằng nhau => S_ENC = S_EMC. (1)

Xét tam giác EDN và ENC chung đỉnh E, đáy DN = NC => S_EDN = S_ENC (2)

Xét S tam giác AMD = S_AMC (phần a đã chứng minh) có chung AME => S_AED = S_EMC (3)

Từ (1) ; (2) và (3) => S_EMC = S_ENC = S_EDN = S_AED.

Ta có S_MBC = 15 cm2 => S_ACD = 15 x 2 = 3 (cm2)

Mà S_ACD = S_ENC + S_EDN + S_AED và 3 tam giác này bằng nhau nên :

S_ENC = 30 : 3 = 10 (cm2) mà S_ENC = S_MEC.

Vậy diện tích MEC = 10 cm2.

c) Từ S_MEC = 10 cm2 => S_MEA = 15 - 10 = 5 (cm2)

Xét có chung chiều cao đỉnh M mà S_MEA/S_MCA = 5/15 = 1/3 =>đáy AE = 1/3 AC

(với cách chứng minh tương tự ta có S_NGC = 5 cm2 và GC = 1/3 AC)

Vậy EG = AC - 1/3 AC - 1/3 AC = 1/3AC

Vậy AE = EG = GC

14 tháng 6 2021
AN và ở đâu