Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD có
M là trung điểm của AB
P là trung điểm của BD
Do đó: MP là đường trung bình của ΔABD
Suy ra: MP//AD và MP=AD/2(1)
Xét ΔADC có
Q là trung điểm của AC
N là trung điểm của DC
Do đó: QN là đường trung bình của ΔADC
Suy ra: QN//AD và QN=AD/2(2)
Xét ΔABC có
M là trung điểm của AB
Q là trung điểm của AC
Do đó: MQ là đường trung bình của ΔABC
Suy ra: MQ=BC/2=AD/2(3)
Từ (1), (2) và (3) suy ra MQNP là hình bình hành
Cô hướng dẫn nhé.
a.MN, PQ cùng song song và bằng một nửa AC, vậy MNPQ là hình bình hành.
b. Em nhìn đc nhé.
c. Cho các điểm như hình vẽ. Kẻ CE, PF vuông góc BD. Khi đó ta có CE = 2DF.
Ta có: \(\frac{S_{PNHG}}{S_{DCB}}=\frac{GH.PF}{\frac{1}{2}AC.CE}=\frac{GH.PF}{PN.CE}=\frac{PF}{CE}=\frac{1}{2}\)
Tương tự \(\frac{S_{MQGH}}{S_{ABD}}=\frac{1}{2}\Rightarrow\frac{S_{MNPQ}}{S_{ABCD}}=\frac{1}{2}\)
Từ đó ta tìm đc \(S_{ABCD}=32\)