Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔHAB có
M là trung điểm của HA
N là trung điểm của HB
Do đó: MN là đường trung bình
=>MN//AB và MN=AB/2
=>MN//PC và MN=PC
=>NCPM là hình bình hành
b; Xét ΔBMC có
BH là đường cao
MN là đường cao
BH cắt MN tại N
DO đó:N là trực tâm
=>CN vuông góc với BM
=>BM vuông góc với MP
hay góc BMP=90 độ
(tự vẽ hình nha)
a,Ta có AM+MB=AB
NC+CD=DC
mà AB=CD(ABCD là HCN)
AM = NC (gt)
=> MB=DN (1)
Ta lại có AB//DC nên MB//DN (2)
Từ (1) và (2) => MBND là HBH
b,ta có : P là trung điểm AB
K là trung điểm AH
=>PK là đường trung bình tam giác AHB
=PK//BH (*)
mà BH//DM (MBND là HBH) (**)
từ (*) và (**) => PK//DM (ĐPCM)
c,do PK là đường trung bình
=>PK=1/2BH
=>PK = BH/2 = 6/2 =3cm
P là trung điểm AB
=> AP = 1/2AB = AB/2 = 10/2 = 5cm
ta có BH⊥AC mà BH//PK => AC⊥PK
=>△APK vuông tại K
S△APK là = 1/2AK.KP = 1/2.5.3 = 7,5
phần d mình chưa nghĩ ra
a: Xét ΔHAB có
M là trung điểm của HA
N là trung điểm của HB
Do đó: MN là đường trung bình
=>MN//AB và MN=AB/2
=>MN//KC và MN=KC
=>NCKM là hình bình hành
b; Xét ΔBMC có
BH là đường cao
MN là đường cao
BH cắt MN tại N
DO đó:N là trực tâm
=>CN vuông góc với BM
=>BM vuông góc với MK
hay góc BMK=90 độ
a: Xét ΔHAB có
M là trung điểm của HA
N là trung điểm của HB
Do đó: MN là đường trung bình
=>MN//AB và MN=AB/2
=>MN//KC và MN=KC
=>NCKM là hình bình hành
b; Xét ΔBMC có
BH là đường cao
MN là đường cao
BH cắt MN tại N
DO đó:N là trực tâm
=>CN vuông góc với BM
=>BM vuông góc với MK
hay góc BMK=90 độ
2AD=5cm
=>\(AD=\dfrac{5}{2}=2,5\left(cm\right)\)
ABCD là hình chữ nhật
=>\(AC^2=AB^2+AD^2\)
=>\(AC^2=5^2+2,5^2=31,25\)
=>\(AC=\sqrt{31,25}=\dfrac{5\sqrt{5}}{2}\left(cm\right)\)
Xét ΔHAB có M,N lần lượt là trung điểm của HA,HB
=>MN là đường trung bình của ΔHAB
=>\(MN=\dfrac{AB}{2}=\dfrac{5}{2}=2,5\left(cm\right)\)