K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2022

lx

13 tháng 4 2022

lỗi r bn

AH
Akai Haruma
Giáo viên
18 tháng 3 2021

Lời giải:

a) Xét tam giác $AHB$ và $BCD$ có:

$\widehat{AHB}=\widehat{BCD}=90^0$

$\widehat{ABH}=\widehat{BDC}$ (2 góc ở vị trí so le trong)

$\Rightarrow \triangle AHB\sim \triangle BCD$ (g.g)

b) 

Vì $ABCD$ là hcn nên $AD=BC=6$ 

Áp dụng định lý Pitago cho tam giác vuông $ABD$:

$BD=\sqrt{AD^2+AB^2}=\sqrt{6^2+8^2}=10$ (cm0

$S_{ABD}=\frac{AB.AD}{2}=\frac{AH.BD}{2}$

$\Rightarrow AH=\frac{AB.AD}{BD}=\frac{6.8}{10}=4,8$ (cm)

 

AH
Akai Haruma
Giáo viên
18 tháng 3 2021

Hình vẽ:

undefined

19 tháng 8 2021

a) Xét hình chữ nhật ABCD có:

AB//CD => \(\widehat{ABH}=\widehat{BDC}\) (2 góc so le trong)

Xét tam giác AHB và tam giác BCD có:

\(\widehat{ABH}=\widehat{BDC}\left(cmt\right)\)

\(\widehat{AHB}=\widehat{BCD}=90^0\)

=> \(\Delta AHB\sim\Delta BCD\left(g.g\right)\)

b) Xét tam giác ADH và tam giác BDA có:

\(\widehat{ADB}\) chung

\(\widehat{AHD}=\widehat{BAD}=90^0\)

\(\Rightarrow\Delta ADH\sim\Delta BDA\left(g.g\right)\)

\(\Rightarrow\dfrac{AD}{DH}=\dfrac{DB}{AD}\Rightarrow AD^2=DH.DB\)

c) Xét tam giác BDC vuông tại C có: 

\(BD^2=BC^2+DC^2\) (Định lý Pytago)\(\Rightarrow BD=\sqrt{BC^2+CD^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)

Ta có: \(AD^2=DH.DB\left(cmt\right)\Rightarrow DH=\dfrac{AD^2}{DB}=\dfrac{6^2}{10}=3,6\left(cm\right)\)

Xét tam giác ADH vuông tại H có:

\(AD^2=AH^2+DH^2\)( định lý Pytago)

\(\Rightarrow AH=\sqrt{AD^2-DH^2}=\sqrt{6^2-3,6^2}=4,8\left(cm\right)\)

a: Xét ΔABD vuông tại A có 

\(BD^2=AB^2+AD^2\)

nên BD=10(cm)

b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có 

\(\widehat{ADH}\) chung

Do đó: ΔADH\(\sim\)ΔBDA

a: BC=căn 6^2+8^2=10cm

b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

c: ΔABC đồng dạng với ΔHBA

=>BA/BH=BC/BA

=>BA^2=BH*BC

BH=AB^2/BC=6^2/10=3,6cm

CH=10-3,6=6,4cm

d: AD là phân giác

=>DB/AB=DC/AC

=>DB/3=DC/4=10/7

=>DB=30/7cm

a: Xét ΔABD vuông tại A và ΔHBA vuông tại H có

góc HBA chung

Do đó: ΔABD\(\sim\)ΔHBA

b: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)

\(HB=\dfrac{AB^2}{BD}=6.4\left(cm\right)\)

a: Xét ΔABD vuông tại A và ΔHBA vuông tại H có

góc HBA chung

Do đó: ΔABD\(\sim\)ΔHBA

b: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)

\(HB=\dfrac{AB^2}{BD}=6.4\left(cm\right)\)

a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có

\(\widehat{ABH}=\widehat{BDC}\)

Do đó: ΔAHB\(\sim\)ΔBCD

b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có 

\(\widehat{ADH}\) chung

Do đó: ΔADH\(\sim\)ΔBDA

Suy ra: \(\dfrac{AD}{BD}=\dfrac{HD}{DA}\)

hay \(AD^2=HD\cdot BD\)

19 tháng 5 2022

a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có

ˆABH=ˆBDCABH^=BDC^

Do đó: ΔAHBΔBCD

b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có 

ˆADHADH^ chung

Do đó: ΔADHΔBDA

Suy ra: ADBD=HDDAADBD=HDDA

hay AD2=HDBD