Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
. Vẽ hình ra nha bạn
a, *△ABH và △ACB có
góc BHA = góc CBA= 90 độ
góc BAH= góc CAB ( góc chung)
⇒ 2 tam giac đồng dạng
*⇒ BA/CA=AB/AH ⇒ AB2=AC. AH
b,* AC=\(\sqrt{AB^2+BC^2=\sqrt{8^2+6^2}}=10\)
. *BH=\(\sqrt{\frac{AB^2+BC^2}{\left(AB.AC\right)^2}}=\)
. *HC = \(\frac{BC^2}{AC}\)
c,* Xét △AMD = △CHB
⇒ DM=HB
Mà HB=HI ( theo đề )
Suy ra DM=IH
* Ta có :
DH // IH ( do cùng vuông góc AC)⇒ DMHI là hình thang
Mà góc DMH = 90
Suy ra DMHI là hcn ⇒ DI // MH hay DI // AC
Suy ra DICA là hình thang (1)
△ICB có CH là đường cao kẻ từ C
Mà CH cũng là đường trung tuyến ( do HB = HI )
Suy ra △ICB cân tại C ⇒ IC = CB
Mà CB = DA ( do ABCD là hcn )
Suy ra DA = IC (2)
Từ (1) và (2) suy ra DICA là hình thang cân
b) Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:
\(AC^2=AB^2+BC^2\)
\(\Leftrightarrow AC^2=8^2+6^2=100\)
hay AC=10(cm)
Vậy: AC=10cm
a: Xét ΔABH vuông tại H và ΔACB vuông tại B có
\(\widehat{BAH}\) chung
Do đó: ΔABH\(\sim\)ΔACB
a. Xét ΔABH và ΔACB có
∠A chung
∠AHB = ∠ABC = 90
⇒Đpcm
b. AD định lý PYTAGO cho ΔABC ta tính đc AC=25 cm
vì ΔABH ∼ ΔACB ⇒ BH/BC = AB/AC
thay số vào và giải
c. câu c tự cm theo định lý Talet đảo
a: Xét ΔABH vuông tại H và ΔACB vuông tại B có
góc BAH chung
=>ΔABH đồng dạng với ΔACB
b: \(AC=\sqrt{7^2+24^2}=25\left(cm\right)\)
BH=7*24/25=6,72(cm)