K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2021

a) Xét tam giác AHB và tam giác BCD ta có:

AHB = BCD (=90^0)

ABH = BDC (AB // CD và 2 góc slt)

=> Tam giác AHB đồng dạng với tam giác BCD (G-G)

b) Tam giác BCD vuonng tại C. Áp dụng Pitago ta tính được BD = 15cm

Tam giác AHB đồng dạng với tam giác BCD (G-G)

\(\Rightarrow\dfrac{AH}{BC}=\dfrac{AB}{BD}\Rightarrow\dfrac{AH}{9}=\dfrac{12}{15}\)

=> AH = 7,2 cm

c) Tam giác AHB vuông tại H. Áp dụng Pitago ta tính được  HB = 9,6cm

\(S_{AHB}=\dfrac{1}{2}AH.HB=\dfrac{1}{2}.7,2.9,6=34,56\left(cm^2\right)\)

3 tháng 4 2018

a) 

vì ABCD hình chữ nhật nên ta có AB//CD 

=> góc ABH= góc BDC ( so le trong, AB//CD)

 xét tam giác AHB,BCD có 

góc A= góc C =90

góc ABH=BDC(cmt)

=> tam giác AHB đồng dạng với tam giác CDB (gg)

b)

vì ABCD hcn nên 

AB=CD=12

BC=AD=9

AD Đlí pytado cho tam giác vuông CDB có 

BD2=BC2+DC2

BD2=81+144

BD=15cm

theo câu a) ta có

AH/AB=BC/BD

=> AH= AB.BC chia BD

AH= 12.9 chia 15

AH= 7.2CM

C)

BD

a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có

góc ABH=góc BDC

=>ΔAHB đồng dạng với ΔBCD

b: BD=căn 9^2+12^2=15cm

AH=9*12/15=108/15=7,2cm
c: Xét ΔHAD có HN/HA=HP/HD

nên NP//AD và NP=AD/2

=>NP//BC và NP=BC/2

=>NP//BM và NP=BM

=>BNPM là hình bình hành

a) Xét ΔAHB vuông tại H và ΔBCD vuông tại C có 

\(\widehat{ABH}=\widehat{BDC}\)(hai góc so le trong, AB//DC)

Do đó: ΔAHB\(\sim\)ΔBCD(g-g)

b) Xét ΔBCD có CE là đường phân giác ứng với cạnh BD(gt)

nên \(\dfrac{EB}{ED}=\dfrac{BC}{CD}\)(Tính chất đường phân giác của tam giác)(1)

Ta có: ΔAHB\(\sim\)ΔBCD(cmt)

nên \(\dfrac{AH}{BC}=\dfrac{HB}{CD}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AH}{HB}=\dfrac{BC}{CD}\)(2)

Từ (1) và (2) suy ra \(\dfrac{AH}{HB}=\dfrac{EB}{ED}\)

hay \(AH\cdot ED=HB\cdot EB\)(đpcm)

1: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có

\(\widehat{ABH}=\widehat{BDC}\)

Do đó:ΔAHB\(\sim\)ΔBCD

2: Ta có: ΔAHB\(\sim\)ΔBCD

nên \(\dfrac{BC}{AH}=\dfrac{CD}{HB}\)

hay BC/CD=AH/HB

mà BC/CD=EB/ED

nên EB/ED=AH/HB

hay \(EB\cdot HB=AH\cdot ED\)

a) Xét ΔAHB vuông tại H và ΔDAB vuông tại A có

\(\widehat{ABH}\) chung

Do đó: ΔAHB∼ΔDAB(g-g)

mik chỉ cần mng lm phần C thui ạ