Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAHD vuông tại H và ΔBAD vuông tại A có
\(\widehat{ABD}\) chung
Do đó: ΔAHD∼ΔBAD(g-g)
Áp dụng định lí Pytago vào ΔADH vuông tại H, ta được:
\(AH^2+HD^2=AD^2\)
\(\Leftrightarrow HD^2=AD^2-AH^2=5^2-4^2=9\)
hay HD=3(cm)
Ta có: ΔAHD∼ΔBAD(cmt)
nên \(\dfrac{AH}{BA}=\dfrac{HD}{AD}=\dfrac{AD}{BD}\)
\(\Leftrightarrow\dfrac{4}{AB}=\dfrac{3}{5}\)
hay \(AB=\dfrac{20}{5}cm\)
Vậy: \(AB=\dfrac{20}{5}cm\)
b) Xét ΔAHD vuông tại H và ΔBHA vuông tại H có
\(\widehat{HAD}=\widehat{HBA}\left(=90^0-\widehat{ADH}\right)\)
Do đó: ΔAHD∼ΔBHA(g-g)
⇔\(\dfrac{AH}{BH}=\dfrac{HD}{HA}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(HA^2=HB\cdot HD\)(đpcm)
a) Xét ΔABD vàΔ HAD có:
\(\widehat{DAB}\) =\(\widehat{AHB}\)= 90o( gt)
\(\widehat{D}\) chung
⇒Δ ABD ∼ ΔHAD(g-g)
b) Áp dụng định lí Py-ta-go vào Δ ABD vuông tại A ta có:
BD=\(\sqrt{AD^2+AB^2}\)=\(\sqrt{3^2+4^2}\)=\(\sqrt{25}\)=5(cm)
Theo câu a ta có:Δ ABD ∼ ΔHAD
⇒\(\dfrac{BD}{AD}\)=\(\dfrac{AD}{HD}\)hay \(\dfrac{5}{3}\)=\(\dfrac{3}{HD}\)⇒HD=\(\dfrac{3.3}{5}\)=1,8 (cm)
a: Xét ΔABD vuông tại A và ΔHAD vuông tại H có
góc ADH chung
Do đó: ΔABD\(\sim\)ΔHAD
b: \(BD=\sqrt{3^2+4^2}=5\left(cm\right)\)
\(HD=\dfrac{AD^2}{BD}=1.8\left(cm\right)\)
a: Xét ΔABD vuông tại A và ΔHBA vuông tại H có
góc HBA chung
Do đó: ΔABD\(\sim\)ΔHBA
b: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)
\(HB=\dfrac{AB^2}{BD}=6.4\left(cm\right)\)
a: Xét ΔABD vuông tại A và ΔHBA vuông tại H có
góc HBA chung
Do đó: ΔABD\(\sim\)ΔHBA
b: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)
\(HB=\dfrac{AB^2}{BD}=6.4\left(cm\right)\)
a: Xét ΔAHD vuông tại H và ΔBAD vuông tại A có
góc D chung
=>ΔAHD đồng dạng với ΔBAD
b; Xét ΔDEA vuông tại D và ΔADB vuông tại A có
góc DEA=góc ADB
=>ΔDEA đồng dạng với ΔADB
=>DE/AD=AD/AB
=>AD^2=DE*AB
c: AD^2=DE*AB
=>DE=3^2/4=2,25cm
a: Áp dụng định lí Pytago vào ΔBDC vuông tại C, ta được:
\(D B ^2 = B C ^2 + C D ^2\)
\(⇔ D B ^2 = 12 ^2 + 9 ^2 = 225\)
hay DB=15(cm)
Xét ΔBDC có
BE là đường phân giác ứng với cạnh DC
nên \(\frac{EC}{ED}=\frac{BC}{BD}=\frac{9}{15}=\frac{3}{5}\)
b: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
\(ˆ A B H = ˆ B D C\)
Do đó: ΔAHB∼ΔBCD