K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2023

a: ABCD là hình chữ nhật

=>AC=BD và AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

Xét ΔBDC có

O,E lần lượt là trung điểm của BD,BC

=>OE là đường trung bình cuả ΔBDC

=>OE//DC và OE=DC/2

OE//DC

DC\(\perp\)BC

Do đó: OE\(\perp\)BC

=>OM vuông góc BC

Xét tứ giác OBMC có

E là trung điểm chung của OM và BC

Do đó: OBMC là hình bình hành

mà OM\(\perp\)BC

nên OBMC là hình thoi

OE=DC/2

mà AB=CD(ABCD là hình chữ nhật)

nên OE=AB/2

mà \(OE=\dfrac{OM}{2}\)

nên AB=OM

OE//CD

AB//CD

Do đó: OE//AB

=>OM//AB

Xét tứ giác ABMO có

AB//MO

AB=MO

Do đó: ABMO là hình bình hành

=>AM cắt BO tại trung điểm của mỗi đường

mà I là trung điểm của BO

nên I là trung điểm của AM

=>A,I,M thẳng hàng

b: Xét tứ giác CFME có

\(\widehat{MFC}=\widehat{ECF}=\widehat{MEC}=90^0\)

=>CFME là hình chữ nhật

=>MF//CE và MF=CE

MF//CE
E\(\in\)BC

Do đó: BE//MF

BE=CE

CE=MF

Do đó: BE=MF

Xét tứ giác BMFE có

BE//MF

BE=MF

Do đó: BMFE là hình bình hành

21 tháng 9 2016

a)Tứ giác CMFN là hình chữ nhật  vì có 3 góc vuông

     Bài 1: Cho hình vuông ABCD, E là điểm thuộc cạnh DC, F là điểm trên tia đối của tia BC sao cho BF=DE.a/ chứng minh tam giác AEF vuông cân.b/ Gọi I là trung điểm EF. Lấy K đối xứng với A qua I. Chứng minh tứ giác AEKF là hình vuông.     Bài 2: cho tam giác ABC vuông tại A có góc ABC=60 độ, kẻ tia Ax song song với BC. Trên tia Ax lấy D sao cho AD = DC.a/ Tính các góc BAD và DAC.b/ chứng minh ABCD là hình thang...
Đọc tiếp

     Bài 1: Cho hình vuông ABCD, E là điểm thuộc cạnh DC, F là điểm trên tia đối của tia BC sao cho BF=DE.
a/ chứng minh tam giác AEF vuông cân.
b/ Gọi I là trung điểm EF. Lấy K đối xứng với A qua I. Chứng minh tứ giác AEKF là hình vuông.
     Bài 2: cho tam giác ABC vuông tại A có góc ABC=60 độ, kẻ tia Ax song song với BC. Trên tia Ax lấy D sao cho AD = DC.
a/ Tính các góc BAD và DAC.
b/ chứng minh ABCD là hình thang cân.
c/ gọi E là trung điểm BC. Chứng minh ADEB là hình thoi.
d/ cho AC = 8cm, AB = 5cm. Tính diện tích hình thoi ABED.
     Bài 3: cho tam giác ABC có hai trung tuyến BD và CE cắt nhau tại G. Gọi M, N lần lượt là trung điểm của BG và CG.
a/ chứng minh MNDE là hình bình hành.
b/ điều kiện của tam giác ABC để hình bình hành MNDE là hình chữ nhật, hình thoi.
c/ chứng minh DE + MN = BC.

~~~~~~~~~~~GIÚP MK VS CÁC BẠN LÀM BÀI NÀO CŨNG ĐƯỢC~~~~~~~~~~~~~~~~~

2
12 tháng 11 2017

Bài này có gì đâu em ! Anh làm nhé !

Chuyển vế cái cần chứng minh ta được 

1/AB^2 - 1/AE^2 =1/4AF^2

hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2

hay BE^2/ 4BC^2.AE^2 = 1/AF^2

Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE

22 tháng 11 2017

Câu 4: Cho tam giác ABC vuông tại A. Biết AB=5cm, BC=13cm. Gọi H, K lần Lượt là trung điểm của AB và BC. Tính độ dài HK

giúp mình nhoa!!