K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 12 2021

Gọi E là giao điểm AB và CD

\(\Rightarrow E=\left(SAB\right)\cap\left(SCD\right)\)

\(\Rightarrow SE=\left(SAB\right)\cap\left(SCD\right)\)

b.

Do M là trung điểm SC, N là trung điểm BC

\(\Rightarrow MN\) là đường trung bình tam giác SBC

\(\Rightarrow MN||SB\)

Mà \(SB\in\left(SBD\right)\Rightarrow MN||\left(SBD\right)\)

c.

Trong mp (ABCD), nối AN cắt CD kéo dài tại F

Trong mp (SCD), nối FM kéo dài cắt SD tại G

\(\Rightarrow G=SD\cap\left(AMN\right)\)

NV
30 tháng 12 2021

undefined

a: Gọi O là giao điểm của AC và BD

\(O\in AC\subset\left(SAC\right)\)

\(O\in BD\subset\left(SBD\right)\)

Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)

Gọi K là giao điểm của AB và CD

\(K\in AB\subset\left(SAB\right)\)

\(K\in CD\subset\left(SCD\right)\)

Do đó: \(K\in\left(SAB\right)\cap\left(SCD\right)\)

mà \(S\in\left(SAB\right)\cap\left(SCD\right)\)

nên \(\left(SAB\right)\cap\left(SCD\right)=SK\)

b: Xét (SAD) và (SBC) có

\(S\in\left(SAD\right)\cap\left(SBC\right)\)

AD//BC

Do đó: (SAD) giao (SBC)=xy, xy đi qua S và xy//AD//BC

c: Chọn mp(SCD) có chứa CD

\(N\in SC\subset\left(SCD\right)\)

\(P\in SD\subset\left(SCD\right)\)

Do đó: \(NP\subset\left(SCD\right)\)

mà \(NP\subset\left(MNP\right)\)

nên (SCD) giao (MNP)=NP

Gọi E là giao điểm của CD với NP

=>E là giao điểm của CD với (MNP)

Chọn mp(SBD) có chứa MP

\(BD\subset\left(SBD\right)\)

\(BD\subset\left(ABCD\right)\)

Do đó: \(BD\subset\left(SBD\right)\cap\left(ABCD\right)\)

Gọi F là giao điểm của MP với BD

=>F là giao điểm của MP với (ABCD)

13 tháng 8 2021

undefined

a: \(I\in BD\subset\left(SBD\right)\)

\(I\in AC\subset\left(SAC\right)\)

Do đó: \(I\in\left(SBD\right)\cap\left(SAC\right)\)

mà \(S\in\left(SBD\right)\cap\left(SAC\right)\)

nên \(\left(SBD\right)\cap\left(SAC\right)=SI\)

b: Gọi K là giao của AB và CD

\(K\in AB\subset\left(SAB\right)\)

\(K\in CD\subset\left(SCD\right)\)

Do đó: \(K\in\left(SAB\right)\cap\left(SCD\right)\)

mà \(S\in\left(SAB\right)\cap\left(SCD\right)\)

nên \(\left(SAB\right)\cap\left(SCD\right)=SK\)

c: AD//BC

\(S\in\left(SAD\right)\cap\left(SBC\right)\)

Do đó: \(\left(SAD\right)\cap\left(SBC\right)=xy\), xy đi qua S và xy//AD//BC

a: \(N\in SC\subset\left(SCD\right)\)

\(N\in\left(ABN\right)\)

Do đó: \(N\in\left(SCD\right)\cap\left(ABN\right)\)

Xét (SCD) và (ABN) có

\(N\in\left(SCD\right)\cap\left(ABN\right)\)

CD//AB

Do đó: (SCD) giao (ABN)=xy, xy đi qua N và xy//AB//CD

c: Chọn mp(SAC) có chứa AN

Gọi O là giao điểm của AC và BD trong mp(ABCD)

\(O\in AC\subset\left(SAC\right)\)

\(O\in BD\subset\left(SBD\right)\)

Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)

Gọi K là giao điểm của AN với SO

=>K là giao điểm của AN với mp(SBD)