K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2018

Đáp án D

Hướng dẫn giải:

Gọi H là tâm của đáy khi đó S H ⊥ ( A B C D ) .

Dựng H P ⊥ C D .

Khi đó  H P = a 2

Do vậy S A B P = a 2 2 ⇒ V S . A P B = a 3 12  

Mặt khác  V S . M N P V S . A B P = S M S A . S N S B . S P S P = 1 4

⇒ V S . M N P = a 3 48

Do vậy V A . M N P = V S . M N P = a 3 48 (do d(S;(MNP))=d(A;(MNP))).

Bài 5. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên hợp với đáy một góc  . Tính VS ABCD . theo a và  . Bài 6. Tính thể tích khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB = α . Áp dụng: Tính VS ABCD . trong trường hợp α = 60 độ. Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC =120độ . Cho SA vuông góc với đáy và SC = 2a .Tính thể tích...
Đọc tiếp

Bài 5. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên hợp với đáy một góc  . Tính VS ABCD . theo a và  . Bài 6. Tính thể tích khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB = α . Áp dụng: Tính VS ABCD . trong trường hợp α = 60 độ.

Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC =120độ . Cho SA vuông góc với đáy và SC = 2a .Tính thể tích hình chóp S.ABCD.

Bài 8. Cho hình chóp S.ABCD có đáy ABCD là một hình thang cân (AB//CD) với AC=20 cm BC=15 cm AB=25 cm . Cho SA vuông góc với đáy và SA =18cm . Tính thể tích của khối chóp.

Bài 9. Cho hình chóp S.ABC có SA vuông góc với đáy. Mặt bên SBC là tam giác đều cạnh a. Cho gócBAC =120 . Tính VS ABC .

. Bài 10. Cho khối chóp S.ABC có đường cao SA bằng a, đáy là tam giác vuông cân có AB= BC= a . Gọi B' là trung điểm của SB, C' là chân đường cao hạ từ A của tam giác S.ABC:

a.Tính thể tích khối chóp S.ABC

b.Chứng minh SC vuông góc với (AB'C')

c.Tính thể tích khối chóp S.ABC

0
27 tháng 7 2019

Đáp án A

Phương pháp:

- Lập tỉ lệ thể tích khối tứ diện AMNP với khối chóp S.ABCD

- Tính thể tích khối chóp S.ABCD

- Tính thể tích khối tứ diện AMNP.

Cách giải:

28 tháng 1 2018

Chọn C.

Gọi O là tâm mặt đáy, suy ra SO ⊥ (ABCD)

Góc giữa mặt bên và mặt đáy là  S N O ^   =   60 °

Vì M là trung điểm của SD nên 

29 tháng 4 2017

Đáp án là B 

Chọn hệ trục tọa độ Oxyz như hình vẽ, ta có: 

Đặt SO = x > 0. => S (0;0; x).

M , N lần lượt là trung điểm của SB và SD nên: 

Theo giả thiết: AM CN 

SO là trục đường tròn ngoại tiếp mặt đáy.

Gọi H là trung điểm SA . Qua H dựng đường trung trực d của SA, I= d ∩ SO  .

=> Mặt cầu ngoại tiếp khối chóp S .ABCD  có tâm I , bán kính R = SI.

∆ SHI đồng dạng với  ∆ SOA

Vậy bán kính mặt cầu ngoại tiếp khối chóp S ABCD . là R= 3 a 10

4 tháng 1 2018

Đáp án C

29 tháng 4 2017

Đáp án B

30 tháng 6 2021

dạ cho em hỏi là tại sao tính NH như vậy được ạ ?? Em cảm ơn!!

 

 

6 tháng 5 2017

Chọn C