Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C.
Phương pháp:
Xác định tâm mặt cầu ngoại tiếp hình chóp đều là giao của đường trung trực 1 cạnh bên và chiều cao của hình chóp.
Từ đó sử dụng tam giác đồng dạng để tính bán kính mặt cầu ngoại tiếp hình chóp đều.
Cách giải:
Ta có A D C ^ = A B C ^ = 60 ° , suy ra tam giác ADC là tam giác đều cạnh a. Gọi N là trung điểm cạnh DC, G là trọng tâm của tam giác ABC. Ta có A N = a 3 2 ; A G = a 3 3
Trong mặt phẳng (SAN), kẻ đường thẳng Gx//SA, suy ra Gx là trục của tam giác ADC.
Gọi M là trung điểm cạnh SA. Trong mặt phẳng (SAN) kẻ trung trực của SA cắt Gx tại I thì IS=IA=ID=IC nên I chính là tâm mặt cầu ngoại tiếp tứ diện S.ACD. Bán kính R của mặt cầu bằng độ dài đoạn IA.
Trong tam giác AIG vuông tại G, ta có:
Đáp án B
Xét trục tọa độ Oxyz như hình vẽ, với O là trung điểm của AD
Chọn a = 1 => => Trung điểm của MN là
Phương trình đường thẳng qua E, song song với Oz là
Gọi I là tâm mặt cầu cần tìm =>
Suy ra
Mà
Vậy
Đáp án C.
Chọn hệ trục tọa độ với H ≡ O 0 ; 0 ; 0 D 1 2 ; 0 ; 0 . Chọn a = 1.
M 0 ; 1 ; 0 ; N 1 2 ; 1 2 ; 0 ; S 0 ; 0 ; 3 2 ; C 1 2 ; 1 ; 0 là: x = 1 4 y = 3 4 z = t ⇒ tâm mặt cầu có tọa độ K 1 4 ; 3 4 ; t
Giải:
S K = K C ⇔ 1 16 + 9 16 + t − 3 2 2 = 1 16 + 1 16 + t 2 ⇔ t = 5 3 12 ⇒ R = K C = 93 12 .