Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C.
Gọi G là trọng tâm Δ A B C ⇒ S G ⊥ ( A B C ) , I là trung điểm AB
A G = 2 3 . a 3 2 = a 3 3 ⇒ S G = S A 2 − A G 2 = a
I G = 1 3 C I = a 3 6
C G = a 3 3
Chọn hệ trục tọa độ như hình vẽ: Ox qua G và song song AB
⇒ G 0 ; 0 ; 0 , S 0 ; 0 ; a , C 0 ; a 3 3 ; 0 ; B a 2 ; a 3 6 ; 0
C A = C B = C D ⇒ C là tâm đường tròn ngoại tiếp Δ A B D
Gọi d là đường thẳng qua C 0 ; a 3 3 ; 0 và vuông góc với (ABD)
⇒ V T P T k → = 0 ; 0 ; 1 ⇒ d : x = 0 y = a 3 3 z = t
Gọi tâm mặt cầu ngoại tiếp SABD là J ∈ d ⇒ J 0 ; a 3 3 ; t
Mà J S = J B ⇔ 0 2 + − a 3 3 2 + a − t 2 = a 2 2 + − a 3 6 − a 3 3 2 + t 2 ⇔ t = 1 6 a
⇒ R = 0 2 + a 3 3 2 + a − 1 6 a 2 = a 37 6
Đáp án C.
Hình chóp S.ABC có đáy ABC là tam giác vuông tại A, cạnh bên SA vuông góc với mặt phẳng (ABC) thì mặt cầu ngoại tiếp hình chóp S.ABC có bán kính r = 1 2 . S A 2 + A B 2 + A C 2 . Với giả thiết của bài toán, ta có r = a 6 2 .
Phân tích phương án nhiễu:
Phương án A: Sai do HS nhớ đúng công thức tính r = 1 2 . S A 2 + A B 2 + A C 2 nhưng lại biến đổi nhầm x 2 + y 2 + z 2 = x + y + z .
Phương án B: Sai do HS có thể gắn hệ trục tọa độ Oxyz vào hình chóp (A trùng với O và B, C, S lần lượt thuộc các tia Ox, Oy, Oz) và nhầm rằng tâm của mặt cầu chính là trọng tâm G a 3 ; a 2 3 ; a 3 3 của tam giác ABC nên tính được r = O G = a 6 3 .
Phương án D: Sai do HS nhớ nhầm công thức r = 1 2 . S A 2 + A B 2 + A C 2 thành r = S A 2 + A B 2 + A C 2 .
Đáp án B
Xét trục tọa độ Oxyz như hình vẽ, với O là trung điểm của AD
Chọn a = 1 => => Trung điểm của MN là
Phương trình đường thẳng qua E, song song với Oz là
Gọi I là tâm mặt cầu cần tìm =>
Suy ra
Mà
Vậy
Đáp án C.
Chọn hệ trục tọa độ với H ≡ O 0 ; 0 ; 0 D 1 2 ; 0 ; 0 . Chọn a = 1.
M 0 ; 1 ; 0 ; N 1 2 ; 1 2 ; 0 ; S 0 ; 0 ; 3 2 ; C 1 2 ; 1 ; 0 là: x = 1 4 y = 3 4 z = t ⇒ tâm mặt cầu có tọa độ K 1 4 ; 3 4 ; t
Giải:
S K = K C ⇔ 1 16 + 9 16 + t − 3 2 2 = 1 16 + 1 16 + t 2 ⇔ t = 5 3 12 ⇒ R = K C = 93 12 .
Đáp án đúng : C