K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2019

7 tháng 2 2019

NV
10 tháng 4 2021

Gọi O là tâm đáy, M là trung điểm AB 

Ta có: \(\left\{{}\begin{matrix}SO\perp\left(ABC\right)\\OM\perp AB\end{matrix}\right.\) \(\Rightarrow\widehat{SMO}\) hay là góc giữa mặt bên và mặt đáy

\(\Rightarrow\widehat{SMO}=60^0\) \(\Rightarrow SO=OM.tan60^0=\dfrac{1}{3}CM.tan60^0=\dfrac{1}{3}AB.\dfrac{\sqrt{3}}{2}.tan60^0=\dfrac{a}{2}\)

\(CO=\dfrac{2}{3}CM=\dfrac{2}{3}.AB\dfrac{\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{3}\)

\(SC=\sqrt{SO^2+OC^2}=\dfrac{a\sqrt{21}}{6}\)

AH
Akai Haruma
Giáo viên
11 tháng 3 2021

Lời giải:

$H$ là chân đường cao của hình chóp đều nên $H$ chính là tâm đường tròn ngoại tiếp tam giác $ABC$

Kẻ $HM\perp BC$. Dễ thấy $M$ là trung điểm $BC$ và $SBC$ cân tại $S$ nên $SM\perp BC$

Do đó:

$\angle ((SBC), (ABC))=\angle (SM, HM)$

$=\widehat{SMH}=60^0$

$\frac{SH}{HM}=\tan \widehat{SMH}=\tan 60^0=\sqrt{3}$

$\Rightarrow SH=\sqrt{3}HM$

Mà: $HM=\frac{1}{3}AM=\frac{1}{3}.\sqrt{AB^2-BM^2}=\frac{1}{3}\sqrt{AB^2-(\frac{BC}{2})^2}=\frac{\sqrt{3}}{6}a$

Do đó: $SH=\sqrt{3}HM=\frac{3}{6}a=\frac{1}{2}a$

 

12 tháng 3 2021

Thầy/cô vẽ hình giúp em với ạ 

16 tháng 5 2017

Đáp án A.


23 tháng 3 2018

Đáp án C

3 tháng 8 2019

Chọn đáp án C

Do S. ABCD đều, có trọng tâm G của tam giác SAC cũng là trọng tâm của SBD.

Nên M, N lần lượt là trung điểm của SC, SD.

Do đó

Gọi K là trung điểm của AB, O = AC ∩ BD  do S. ABCD đều nên SO  ⊥ (ABCD)  

ABCD là hình vuông nên có SKO = 60 0  

Xét tam giác SKO vuông tại O có KO = a 2  và SKO = 60 0   suy ra:

27 tháng 3 2019

Đáp án C

1 tháng 11 2019

Đáp án A

 

Ta có