Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình câu c là tui vẽ riêng ra cho dễ nhìn thôi, còn hình vẽ trình bày vô bài lấy hình chung ở câu a và b nhó :v
a: Gọi O là giao điểm của AC và BD
\(O\in AC\subset\left(SAC\right);O\in BD\subset\left(SBD\right)\)
=>\(O\in\left(SAC\right)\cap\left(SBD\right)\)
mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)
nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)
b: Xét (SAD) và (SBC) có
AD//BC
\(S\in\left(SAD\right)\cap\left(SBC\right)\)
Do đó: (SAD) giao (SBC)=xy, xy đi qua S và xy//AD//BC
d: Trong mp(SAB), gọi I là giao điểm của AB với SM
\(I\in SM;I\in AB\subset\left(ABCD\right)\)
Do đó: I là giao điểm của SM với mp(ABCD)
a.
Trong mp (SAB) nối PM kéo dài cắt SB tại G
Trong mp (ABCD) nối PN cắt BC kéo dài tại H
\(\Rightarrow GH=\left(MNP\right)\cap\left(SBC\right)\)
b.
Nối SE cắt AD tại I, nối SF cắt BC tại K
Trong mp (ABCD), nối IK cắt PN kéo dài tại S
Trong mp (SBC), SF kéo dài cắt GH tại R
\(\Rightarrow RS\) là giao tuyến của (MNP) và (SEF)
Trong mp (SEF), nối RS và EF cắt nhau tại Q
\(\Rightarrow Q=EF\cap\left(MNP\right)\)