K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2018

Đáp án B.

Hướng dẫn giải:Ta có

Suy ra tam giác SAD vuông cân tại A nên SA = AD =2a .

Trong hình thang ABCD , kẻ B H ⊥ A D ( H ∈ A D ) .

Do ABCD là hình thang cân nên A H = A D - B C 2 = a 2 .

Tam giác AHB ,có  B H = A B 2 - A H 2 = a 3 2

Diện tích S A B C D = 1 2 ( A D + B C ) . B H = 3 a 3 2 4  .

Vậy   V S . A B C D = 1 3 S A B C D . S A = a 3 3 2

1 tháng 1 2017
NV
1 tháng 9 2021

\(V_{SBCD}=\dfrac{1}{2}V_{SABCD}=\dfrac{1}{6}.SA.AB.AD=\dfrac{a^3\sqrt{3}}{3}\)

27 tháng 9 2017

14 tháng 9 2019

Chọn A

11 tháng 10 2019

Đáp án A

Dễ thấy trung điểm I của SC là tâm hình cầu ngoại tiếp chóp S.AICD.

Vậy thể tích hình cầu ngoại tiếp chop S.AICD là:

22 tháng 11 2019






NV
24 tháng 8 2021

Gọi O là trung điểm AD

\(\Rightarrow OA=OB=OC=OD=a\)

\(\Rightarrow\) O là tâm đường tròn ngoại tiếp đáy

Gọi I là trung điểm SD \(\Rightarrow IO\perp\left(ABCD\right)\) đồng thời I là tâm đường tròn ngoại tiếp SAD (tam giác SAD vuông tạm A)

\(\Rightarrow I\) là tâm mặt cầu ngoại tiếp

\(SD=\sqrt{SA^2+AD^2}=2a\sqrt{2}\)

\(\Rightarrow R=\dfrac{1}{2}SD=a\sqrt{2}\)

20 tháng 7 2017

Đáp án đúng : C