K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2017

Đáp án A

Gọi I, E lần lượt là trung điểm của ABCD

Vì  S M S A = 1 2 ⇒ d M ; S C D = 1 2 d A ; S C A = 1 2 d I ; S C A

= 1 2 I H , trong đó H là hình chiếu của I lên SE

Ta có  1 I H 2 = 1 I S 2 + 1 I E 2 = 1 a 2 − a 2 2 + 1 a 2 = 7 3 a 2

⇒ I H = a 21 7 ⇒ d M ; S C D = 1 2 . a 21 7 = a 21 14

7 tháng 12 2017

Đáp án C

Theo dữ kiện đề bài cho, dễ dàng chứng minh được ΔACD vuông tại cân C và A C = A D 2 = a 2 .

C D ⊥ A C C D ⊥ S A ⇒ C D ⊥ S A C ⇒ S A C ⊥ S C D

Mà S A C ∩ S C D = S C , từ A kẻ A H ⊥ S C . Khi đó d A ; S C D = A H .

Tam giác SAC vuông tại

 A: 1 A H 2 = 1 S A 2 + 1 A C 2 = 1 a 2 + 1 2 a 2 = 3 2 a 2 ⇒ d A ; S C D = A H = a 2 3

Mặt khác: A D ∩ S C D = D  và M là trung điểm AD nên:

d M ; S C D d A ; S C D = M D A D = 1 2 ⇒ d M ; S C D = 1 2 d A ; S C D = a 6 6

7 tháng 2 2017

Đáp án là D

+ Gọi O là giao điểm của AC,BD

MO \\ SB ⇒ SB \\ ACM

d  SB,ACM = d B,ACM = d D,ACM  .

+ Gọi I là trung điểm của AD ,

M I \ \ S A ⇒ M I ⊥ A B C D d     D , A C M     = 2 d     I , A C M  .

+ Trong ABCD: IK ⊥ AC  (với K  ∈ AC ).

+ Trong MIK: IH ⊥ MK  (với H ∈ MK ) (1)  .

+ Ta có: AC ⊥  MI ,AC ⊥  IK ⇒  AC ⊥  MIK

  ⇒  AC ⊥  IH (2) .

Từ 1 và 2 suy ra

IH ⊥  ACM ⇒  d  I ,ACM  = IH  .

+ Tính IH ?

- Trong tam giác vuông MIK. : I H = I M . I K I M 2 + I K 2 .

- Mặt khác: M I = S A 2 = a , I K = O D 2 = B D 4 = a 2 4

⇒ I H = a a 2 4 a 2 + a 2 8 = a 3

Vậy   d     S B , A C M = 2 a 3 .

Lời giải khác

24 tháng 3 2019

24 tháng 9 2018

Đáp án B. 

Gọi I là trung điểm của SP. Theo định lý Talet:

d 1 H M N = 1 2 d S H M N . Ta cần tính  d S H M N .

Bước 1: Tìm  V S . H M N

Ta có: 

V S . H M N V S . H A D = 1 2 . 1 2 = 1 4 ; V S . H A D V S . A B C D = 1 4

Giả sử a = 1

Dễ thấy 

V S . A B C D = 1 3 S H . S A B C D = 1 3 . 3 2 . 3 2 = 1 4

⇒ V S . H M N = 1 16 . 1 4 = 1 64 .

Bước 2: Tìm S H M N . Ta có: M H → = − 1 2 B S → và  M N → = 1 2 B C → ⇒ H M N = 180 ° − S B C .

Do đó 

sin H M N = sin S B C ⇒ S H M N = 1 2 M H . M N . sin H M N = 1 4 . S S B C .

Tam giác SBC có SB = BC = 1; 

S C = S H 2 + H C 2 = 2 S H = 6 2 ⇒ S S B C = 15 8 .

Do đó  S H M N = 1 4 . 15 8 = 15 32 .

Bước 3: Sử dụng công thức: 

d S H M N = 3. V S . H M N S H M N = 3 64 . 32 15 = 15 10 ⇒ d I H M N = 1 2 . 15 10 = 15 20 .

 

22 tháng 10 2018

25 tháng 9 2018

28 tháng 8 2017

28 tháng 11 2019