K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Gọi O là giao điểm của AC và BD

\(O\in AC\subset\left(SAC\right)\)

\(O\in BD\subset\left(SBD\right)\)

Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)

Gọi K là giao điểm của AB và CD

\(K\in AB\subset\left(SAB\right)\)

\(K\in CD\subset\left(SCD\right)\)

Do đó: \(K\in\left(SAB\right)\cap\left(SCD\right)\)

mà \(S\in\left(SAB\right)\cap\left(SCD\right)\)

nên \(\left(SAB\right)\cap\left(SCD\right)=SK\)

b: Xét (SAD) và (SBC) có

\(S\in\left(SAD\right)\cap\left(SBC\right)\)

AD//BC

Do đó: (SAD) giao (SBC)=xy, xy đi qua S và xy//AD//BC

c: Chọn mp(SCD) có chứa CD

\(N\in SC\subset\left(SCD\right)\)

\(P\in SD\subset\left(SCD\right)\)

Do đó: \(NP\subset\left(SCD\right)\)

mà \(NP\subset\left(MNP\right)\)

nên (SCD) giao (MNP)=NP

Gọi E là giao điểm của CD với NP

=>E là giao điểm của CD với (MNP)

Chọn mp(SBD) có chứa MP

\(BD\subset\left(SBD\right)\)

\(BD\subset\left(ABCD\right)\)

Do đó: \(BD\subset\left(SBD\right)\cap\left(ABCD\right)\)

Gọi F là giao điểm của MP với BD

=>F là giao điểm của MP với (ABCD)

a: Ta có: CD//AB

AB\(\subset\)(SAB)

CD không nằm trong mp(SAB)

Do đó: CD//(SAB)

b: Xét ΔSBD có

M,N lần lượt là trung điểm của SB,SD

=>MN là đường trung bình của ΔSBD

=>MN//BD

Xét (CMN) và (ABCD) có

\(C\in\left(CMN\right)\cap\left(ABCD\right)\)

MN//BD

Do đó: (CMN) giao (ABCD)=xy, xy đi qua C và xy//MN//BD

 

31 tháng 3 2017

a) (SAD) ∩ (SBC) = SE

b) Trong (SBE): MN ∩ SE = F

Trong (SAE): AF ∩ SD = P là điểm cần tìm

c) Thiết diện là tứ giác AMNP

TenAnh1 A = (-0.14, -7.4) A = (-0.14, -7.4) A = (-0.14, -7.4) B = (14.46, -7.36) B = (14.46, -7.36) B = (14.46, -7.36) C = (-3.74, -5.6) C = (-3.74, -5.6) C = (-3.74, -5.6) D = (11.62, -5.6) D = (11.62, -5.6) D = (11.62, -5.6)

7 tháng 11 2019

Giải bài 3 trang 77 sgk Hình học 11 | Để học tốt Toán 11

a) Tìm (SAD) ∩ (SBC)

Gọi E= AD ∩ BC. Ta có:

Giải bài 3 trang 77 sgk Hình học 11 | Để học tốt Toán 11

Do đó E ∈ (SAD) ∩ (SBC).

mà S ∈ (SAD) ∩ (SBC).

⇒ SE = (SAD) ∩ (SBC)

b) Tìm SD ∩ (AMN)

+ Tìm giao tuyến của (SAD) và (AMN) :

Trong mp (SBE), gọi F = MN ∩ SE :

F ∈ SE ⊂ (SAD) ⇒ F ∈ (SAD)

F ∈ MN ⊂ (AMN) ⇒ F ∈ (AMN)

⇒ F ∈ (SAD) ∩ (AMN)

⇒ AF = (SAD) ∩ (AMN).

+ Trong mp (SAD), gọi AF ∩ SD = P

⇒ P = SD ∩ (AMN).

c) Tìm thiết diện với mp(AMN):

(AMN) ∩ (SAB) = AM;

(AMN) ∩ (SBC) = MN;

(AMN) ∩ (SCD) = NP

(AMN) ∩ (SAD) = PA.

⇒ Thiết diện cần tìm là tứ giác AMNP.

3 tháng 10 2021

1.

Gọi \(O=AC\cap BD\)

\(AM\in\left(SAC\right)\)

Mà \(\left(SAC\right)\cap\left(SBD\right)=SO\)

\(\Rightarrow J=AM\cap SO\)

Qua M kẻ \(d//AB\Rightarrow N=d\cap SD\)

3 tháng 10 2021

2.

\(\left\{{}\begin{matrix}S,P,Q\in\left(SAD\right)\\S,P,Q\in\left(SBC\right)\end{matrix}\right.\Rightarrow S,P,Q\) thẳng hàng.

NV
30 tháng 12 2021

Gọi E là giao điểm AB và CD

\(\Rightarrow E=\left(SAB\right)\cap\left(SCD\right)\)

\(\Rightarrow SE=\left(SAB\right)\cap\left(SCD\right)\)

b.

Do M là trung điểm SC, N là trung điểm BC

\(\Rightarrow MN\) là đường trung bình tam giác SBC

\(\Rightarrow MN||SB\)

Mà \(SB\in\left(SBD\right)\Rightarrow MN||\left(SBD\right)\)

c.

Trong mp (ABCD), nối AN cắt CD kéo dài tại F

Trong mp (SCD), nối FM kéo dài cắt SD tại G

\(\Rightarrow G=SD\cap\left(AMN\right)\)

NV
30 tháng 12 2021

undefined