Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi O là tâm đáy \(\Rightarrow SO=\left(SBD\right)\cap\left(SAC\right)\)
Trong mp (SAC), gọi E là giao điểm SO và MN
MN là đường trung bình tam giác SAC \(\Rightarrow\) E là trung điểm SO
Trong mp (SAD), nối BE kéo dài cắt SD tại K
\(\Rightarrow K=SD\cap\left(BMN\right)\)
Áp dụng định lý Menelaus cho tam giác SOD:
\(\dfrac{ES}{EO}.\dfrac{BO}{BD}.\dfrac{KD}{KS}=1\Rightarrow1.\dfrac{1}{2}.\dfrac{KD}{SK}=1\Rightarrow KD=2SK\)
\(\Rightarrow\dfrac{SK}{SD}=\dfrac{1}{3}\)
Qua S kẻ đường thẳng d song song AD (và BC)
Do \(\left\{{}\begin{matrix}S\in\left(SAD\right)\cap\left(SBC\right)\\AD||BC\\AD\in\left(SAD\right)\\BC\in\left(SBC\right)\end{matrix}\right.\) \(\Rightarrow\) giao tuyến của (SAD) và (SBC) là đường thẳng qua S và song song AD, BC
\(\Rightarrow d=\left(SAD\right)\cap\left(SBC\right)\)
a) Tìm thiết diện :
Trong mp(ABCD), gọi F = AD ∩ PN và E = AB ∩ PN
Trong mp(SAD), gọi Q = MF ∩ SD
Trong mp(SAB), gọi R = ME ∩ SB
Nối PQ, NR ta được các đoạn giao tuyến của mp(MNP) với các mặt bên và mặt đáy của hình chóp là MQ, QP, PN, NR, RM
Vậy thiết diện cắt bởi mặt phẳng (MNP) là ngũ giác MQPNR.
b) Tìm SO ∩ (MNP). Gọi H là giao điểm của AC và PN .
Trong (SAC), SO ∩ MH = I
Vậy I = SO ∩ (MNP).
MN song song BD (đường trung bình)
Do đó qua P kẻ đường thẳng song song BD kéo dài cắt AB tại E
=>DPEB là hình bình hành (2 cặp cạnh đối song song)
=>EB=DP=AB/2
EA=AB+EB=3AB/2