Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C.
Ta có SAD là tam giác đều nên S H ⊥ A D
Mặt khác S A D ⊥ A B C D ⇒ S H ⊥ A B C D .
Dựng B E ⊥ H C ,
do B E ⊥ S H ⇒ B E ⊥ S H C
Do đó d = B E = 2 a 6 ; S H = a 3 ; A D = 2 a
Do S C = a 15 ⇒ H C = S C 2 − S H 2 = 2 a 3 .
Do S A H B + S C H D = 1 2 a A B + C D = S A B C D 2
suy ra V S . A B C D = 2 V S . H B C = 2 3 . S H . S B C H
= 3 2 a 3 . B E . C H 2 = 4 a 3 6 .
Đáp ánA
Do Δ S A B đều nên S I ⊥ A B
Mặt khác S A B ⊥ A B C D ⇒ S I ⊥ A B C D
Dựng I E ⊥ C M ; I F ⊥ S E ⇒ d I ; S C M = I F
Ta có: C M = a 5 2 ; S I C M = S A B C D − S I B C − S M C D = S A I M
= a 2 − a 2 4 − a 2 4 − a 2 8 = 3 a 2 8
Do đó I E = 2 S I C M C M = 3 a 5 10 ; S I = a 3 2
Lại có d = I F = S I . I E S I 2 + I E 2 = 3 a 2 8 .
Chọn: B