K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2019

   Đề thi Học kì 2 Toán 11 có đáp án (Đề 4)

Gọi I = AC ∩ MN ⇒ I là trung điểm của OC, ta có:

   Đề thi Học kì 2 Toán 11 có đáp án (Đề 4)

- Ta có: MN// BD mà BD ⊥ (SAC)(cmt) ⇒ MN ⊥ (SAC).

- Trong (SAC) kẻ AH ⊥ SI (H ∈ SI) ⇒ MN ⊥ AH.

   Đề thi Học kì 2 Toán 11 có đáp án (Đề 4)

- Ta có:

   Đề thi Học kì 2 Toán 11 có đáp án (Đề 4)

- Xét tam giác vuông SAI ta có:

   Đề thi Học kì 2 Toán 11 có đáp án (Đề 4)

22 tháng 2 2021

Ta có \(\frac{d\left(A,\left(SCD\right)\right)}{d\left(M,\left(SCD\right)\right)}=2\Rightarrow d=\left(m,\left(SCD\right)\right)=\frac{1}{2}d\left(A,\left(SCD\right)\right)\)

Dễ thấy AC _|_ CD, SA _|_ CD dựng AH _|_ SA => AH _|_ (SCD)

Vậy d(A,(SCD))=AH

Xét tam giác vuông SAC (A=1v) có \(\frac{1}{AH^2}=\frac{1}{AC^2}+\frac{1}{AS^2}\Rightarrow AH=\frac{a\sqrt{6}}{3}\)

Vậy suy ra \(d\left(M,\left(SCD\right)\right)=\frac{a\sqrt{6}}{3}\)

E=ABCD,G=ENSBGE=AB∩CD,G=EN∩SB⇒G là trọng tâm tam giác SAE.

d(M,(NCD))=GMGBd(B,(NCD))=12d(B,(NCD))=12.12d(A,(NCD))=14d(A,(NCD))=14hd(M,(NCD))=GMGBd(B,(NCD))=12d(B,(NCD))=12.12d(A,(NCD))=14d(A,(NCD))=14h 

Tứ diện AEND vuông tại đỉnh A nên 1h2=1AN2+1AE2+1AD2=116a2h=a66111h2=1AN2+1AE2+1AD2=116a2⇒h=a6611 

Vậy d(M,(NCD))=a6644.d(M,(NCD))=a6644. 

22 tháng 2 2021

Dựng CH _|_ AB => CH _|_ (SAB)

Giả sử MN cắt AD tại F. Theo định lý Talet ta có:

\(\frac{DF}{MC}=\frac{ND}{NC}=\frac{1}{2}\Rightarrow DF=\frac{MC}{2}=\frac{a}{4}\)

Khi đó \(\frac{PA}{PC}=\frac{AF}{MC}=\frac{5}{2}\Rightarrow\frac{CA}{PA}=\frac{7}{5}\)

Do đó: d (P;(SAB))=\(\frac{5}{7}d\left(C;\left(SAB\right)\right)=\frac{5}{7}CH=\frac{5}{7}\cdot\frac{a\sqrt{3}}{2}=\frac{5a\sqrt{3}}{14}\)

8 tháng 5 2021

\(\dfrac{\sqrt{3}a5}{14}\)

11 tháng 1 2017

Chọn A.

Xác định được

Vì M là trung điểm SA nên 

Kẻ AK  ⊥ DM và chứng minh được AK  (CDM) nên 

Trong tam giác vuông MAD tính được 

16 tháng 4 2017

11 tháng 4 2017

   Đề thi Học kì 2 Toán 11 có đáp án (Đề 4)

AM là hình chiếu của SM trên (ABCD).

   Đề thi Học kì 2 Toán 11 có đáp án (Đề 4)

- Xét tam giác vuông ABM ta có: Đề thi Học kì 2 Toán 11 có đáp án (Đề 4)

- Xét tam giác vuông SAM ta có: Đề thi Học kì 2 Toán 11 có đáp án (Đề 4)

12 tháng 2 2017

+ Ta có: M N // B C ⇒ M N // S B C E M // S B ⇒ E M // S B C ⇒ M N E // S B C

⇒ d((MNE); (SBC)) = d(M; (SBC))

+ Lại có: AM ∩ (SBC) = B ⇒ d A ; S B C d M ; S B C = A B M B = 2 ⇒ d(M; (SBC)) = 1/2 d(A;(SBC))

⇒ d ((MNE);(SBC)) = 1/2 d(A;(SBC))

+ Từ A hạ AF ⊥  BC tại F, AG  ⊥  SF tại G

B C ⊥ S A B C ⊥ A F ⇒ B C ⊥ S A F ⇒ B C ⊥ A G  mà AG  SF nên AG (SBC)

⇒  d(A;(SBC)) = AG

+ Tính AG

Do ABCD là hình thang cân, BC = 2a nên suy ra BF = a/2

⇒ AF = BF. tan 60 ° =  a 3 2

Tam giác SAF vuông tại A có AG là đường cao

⇒ 1 A G 2 = 1 S A 2 + 1 A F 2   ⇒ AG = a 66 11

⇒ d ((MNE);(SBC)) = 1/2 d(A;(SBC)) = 1/2 AG = a 66 22 .

Đáp án C

12 tháng 4 2019

Câu hỏi của Phạm Thùy Dương - Toán lớp 11 - Học toán với OnlineMath

Em tham khảo bài làm tại link này nhé!

12 tháng 4 2019

Cộng đồng học tập online | Học trực tuyến

Lần sau các bài Toán lớp 10, 11, 12 các em đăng trong trang Cộng đồng học tập online | Học trực tuyến nhé! olm hầu như để giải đáp thắc mắc của HỌc sinh tiểu học và trung học em nhé :). Chúc em học tập tốt :)<3