K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2019

 

Đáp án B.

Gọi H là trung điểm của cạnh AB. Khi đó SH ⊥ (ABCD)

Ta có SH ⊥ AB; AB ⊥ HN; HN ⊥ SH và SH =  3

Chọn hệ trục tọa độ Oxyz sao cho H trùng với O, B thuộc tia Ox, N thuộc tia Oy và S thuộc tia Oz. Khi đó:  B(1;0;0), A(-1;0;0), N(0;2 3 ;0), C(1;2 3 ;0)

D(-1;2 3 ;0), S(0;0; 3 ), M( - 1 2 ; 0 ; 3 2 ), P(1; 3 ;0)

Mặt phẳng (SCD) nhận 

làm một vectơ pháp tuyến; mặt phẳng (MNP) nhận 

làm một vectơ pháp tuyến.

Gọi  φ là góc tạo bởi hai mặt phẳng (MNP) (SCD) thì

Phân tích phương án nhiễu.

Phương án A: Sai do HS tính đúng 

nhưng lại tính sai Do đó tính được

Phương án B: Sai do HS tính đúng  nhưng lại tính sai 

Do đó tính được 

Phương án C: Sai do HS tính đúng  nhưng lại tính sai 

Do đó tính được 

 

 

14 tháng 2 2017

21 tháng 8 2017

Đáp án B.

Gọi H là trung điểm AB, G là trọng tâm  

Trong mặt phẳng (ABCD), 

Ta có: 

Gọi I là hình chiếu của H lên BD, K là hình chiếu của H lên GI

Ta có: 

NV
23 tháng 4 2022

Do SAB là tam giác đều \(\Rightarrow SH\perp AB\)

Mà \(\left\{{}\begin{matrix}\left(SAB\right)\perp\left(ABCD\right)\\AB=\left(SAB\right)\cap\left(ABCD\right)\end{matrix}\right.\) \(\Rightarrow SH\perp\left(ABCD\right)\)

Gọi E là trung điểm CD, từ H kẻ \(HF\perp SE\) (F thuộc SE)

\(\left\{{}\begin{matrix}HE\perp CD\\SH\perp\left(ABCD\right)\Rightarrow SH\perp CD\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SHE\right)\)

\(\Rightarrow CD\perp HF\)

\(\Rightarrow HF\perp\left(SCD\right)\Rightarrow HF=d\left(H;\left(SCD\right)\right)\)

\(HE=BC=a\) ; \(SH=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều cạnh a)

Hệ thức lượng: 

\(HF=\dfrac{SH.HE}{\sqrt{SH^2+HE^2}}=\dfrac{a\sqrt{21}}{7}\)

NV
23 tháng 4 2022

undefined

11 tháng 1 2017

Chọn A.

Xác định được

Vì M là trung điểm SA nên 

Kẻ AK  ⊥ DM và chứng minh được AK  (CDM) nên 

Trong tam giác vuông MAD tính được 

26 tháng 1 2018

8 tháng 2 2019