K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2017

Đáp án C

Gọi M, N lần lượt là trung điểm của AB và CD

Tam giác SAB cân tại S suy ra S M ⊥ A B  

⇒ S M ⊥ d , với d = ( S A B ) ∩ ( S C D )  

Vì ( S A B ) ⊥ ( S C D ) suy ra S M ⊥ ( S C D )

Kẻ S H ⊥ M N ⇒ S H ⊥ ( A B C D )  

Ta có S ∆ S A B + S ∆ S C D = 7 a 2 10  

 

⇒ S M + S N = 7 a 5

Tam giác SMN vuông tại S nên S M 2 + S N 2 = M N 2 = a 2  

Giải hệ  S M + S N = 7 a 5 S M 2 + S N 2 = a 2

Vậy thể tích khối chóp  V S . A B C D = 1 3 . S A B C D . S H = 4 a 3 25

16 tháng 10 2021

chịu mình mới học lớp 6

16 tháng 10 2021

tính VSABCD nhé các bạn ! -_-

20 tháng 5 2016

S o B H A D G d H' C K

Câu a bạn tự tính nhé!

Câu b: Qua G kẻ đường thẳng d // CD , khoảng cách từ \(d\left(G;\left(SAB\right)\right)=d\left(d;\left(SAD\right)\right)\) 

Kẻ HH' vuông CD , nối SH'. Lúc này SH' cách d tại K . \(d\left(K;\left(SAB\right)\right)\) là khoảng cách cần tìm.

Ta có: SH'AB =\(\frac{1}{2}S_{ABCD}\)=\(\frac{1}{2}\times2\sqrt{3}a^2=\sqrt{3}a^2\) \(\Rightarrow HH'=\frac{\sqrt{3}a^2}{a}=\sqrt{3}a\) 

Vì K nằm trên d nên \(d\left(K;\left(SAB\right)\right)=\frac{2}{3}HH'=\frac{2\sqrt{3}a}{3}\)

 

 

AH
Akai Haruma
Giáo viên
22 tháng 6 2021

Lời giải:
Lấy $H$ là trung điểm $AB$ thì do $SAB$ cân tại $S$ nên $SH\perp BH$

$BH$ là giao tuyến của $(SAB), (ABCD)$; (SAB)\perp (ABCD)$ nên $SH\perp (ABCD)$

$\Rightarrow (SC, (ABCD))=(SC, CH)=\widehat{SCH}=45^0$

$\Rightarrow SH=CH=\sqrt{BC^2+BH^2}=\sqrt{(2a)^2+(\frac{a}{2})^2}=\frac{\sqrt{17}}{2}a$
\(V_{S.ABCD}=\frac{1}{3}.SH.S_{ABCD}=\frac{1}{3}.\frac{\sqrt{17}}{2}a.a.2a=\frac{\sqrt{17}}{3}a^3\)