K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2018

Đáp án C

Gọi O là trung điểm của BC, suy ra O là tâm đường tròn ngoại tiếp tam giác ABC.

Ngoài ra, theo giả thiết ta có SA = SB = SC nên SO là trục của đường tròn ngoại tiếp tam giác ABC.

1 tháng 3 2019

Đáp án B

c os S M ; B C = c os S M → ; B C → = S M → . B C → S M . B C , ta có   S M = a 2 2 ; B C = a 2 ;

S M → . B C → = 1 2 S B → + S A → S C → − S B → = − 1 2 S B 2 = − 1 2 a 2 ;   c os S M ; B C ^ = 1 2 ⇒ S M ; B C ^ = 60 ∘

18 tháng 12 2017

Chọn A       

Chọn hệ trục tọa độ A(1;0;0), B(0;2;0), C(0;0;3).

Khi đó M thuộc mặt phẳng (ABC) thỏa mãn đề bài nên  S M = 6 3 11

11 tháng 2 2018

Đáp án C

Thể tích khối chóp S.ABC là

V = 1 6 S A . S B . S C = 1 6 .2 3 .2.3 = 2 3

4 tháng 8 2019

Đáp án C

Thể tích khối chóp là  V = 1 6 .2 3 .2.3 = 2 3

7 tháng 1 2019

19 tháng 9 2019

 

Đáp án D

Phương pháp:

- Gọi H là trực tâm tam giác, chứng minh S H ⊥ A B C bằng cách sử dụng định lý: “Đường thẳng vuông góc với hai đường thẳng cắt nhau thì nó vuông góc với mặt phẳng chứa hai đường thẳng đó”.

- Tính độ dài SH bằng cách sử dụng hệ thức lượng giữa cạnh và đường cao trong tam giác vuông.

Cách giải: Gọi H là trực tâm của tam giác ABC.

Ta sẽ chứng minh SH là đường cao của hình chóp.

Gọi E, D lần lượt là hình chiếu của B,A lên AC,BC.

Chú ý khi gii: Từ nay về sau, các em có thể ghi nhớ hệ thức liên hệ giữa đường cao và cạnh trong hình chóp S.ABC mà có SA, SB, SC đôi một vuông góc, đó là  1 S H 2 = 1 S A 2 1 S B 2 + 1 S C 2

 

30 tháng 12 2019

17 tháng 5 2018

Phương pháp:

+) Thể tích của tứ diện vuông có độ dài các cạnh góc vuông là a, b, c là:  V = 1 6 a b c

+) Sử dụng công thức tỉ số thể tích Simpson

Cách giải:

S.ABC là tứ diện vuông tại đỉnh S