K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 2 2021

Kẻ \(BK\perp AC\Rightarrow BK\perp\left(SAC\right)\)

\(\Rightarrow BK=d\left(B;\left(SAC\right)\right)\)

\(\dfrac{1}{BK^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Rightarrow BK=\dfrac{AB.AC}{\sqrt{AB^2+AC^2}}=\dfrac{a\sqrt{3}}{2}\)

Kẻ \(CP\perp BH\Rightarrow CP\perp\left(SBH\right)\)

\(\Rightarrow CP=d\left(C;\left(SBH\right)\right)\)

\(\widehat{CBP}=\widehat{ACB}=30^0\Rightarrow CH=BC.sin30^0=\dfrac{a\sqrt{3}}{2}\)

\(BH=\dfrac{AC}{2}=\dfrac{1}{2}\sqrt{AB^2+AC^2}=a\)\(\Rightarrow SH=\sqrt{SB^2-BH^2}=a\)

Kẻ \(HE\perp BC\) , kẻ \(HF\perp SE\Rightarrow HF=d\left(H;\left(SBC\right)\right)\)

\(HE=CH.sin30^0=\dfrac{a}{2}\) 

\(\dfrac{1}{HF^2}=\dfrac{1}{SH^2}+\dfrac{1}{HE^2}\Rightarrow HF=\dfrac{SH.HE}{\sqrt{SH^2+HE^2}}=\dfrac{a\sqrt{5}}{5}\)

NV
22 tháng 3 2023

A là khẳng định sai.

Vì \(SB\perp\left(ABC\right)\) nên \(SB\perp BC\)

Nếu \(SA\perp BC\Rightarrow SA||SB\) hoặc SA trùng SB (đều vô lý)

12 tháng 6 2017

23 tháng 9 2017

9 tháng 10 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) BC ⊥ SA & BC ⊥ AB) ⇒ BC ⊥ (SAB)

⇒ BC ⊥ SB.

⇒ tam giác SBC vuông tại B.

b) BH ⊥ AC & BH ⊥ SA ⇒ BC ⊥ (SAC)

⇒ (SBH) ⊥ (SAC).

c) d[B, (SAC)] = BH. Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

11 tháng 6 2018

22 tháng 2 2018

Chọn A

Gọi H là trung điểm của AC. Đỉnh S cách đều các điểm A, B, C 

=> SH  ⊥ (ABC)

Xác đinh được 

Ta có MH // SA

Gọi I là trung điểm của AB => HI ⊥ AB

và chứng minh được HK  ⊥ (SAB)

Trong tam giác vuông SHI tính được 

18 tháng 4 2017

Chọn D.

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 2)

+) Ta có :

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 2)

⇒ Suy ra : A đúng.

+) Ta có : Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 2)

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 2)

⇒ Suy ra : C đúng.

+) Mặt khác : AH ⊥ CD nên:

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 2)

⇒ Suy ra : D sai.