K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A
Admin
Giáo viên
31 tháng 3 2016

S A B C M

 

Ta có : \(SA\perp BC\)\(AB\perp BC\) \(\Rightarrow SB\perp BC\)

Do đó : góc giữa 2 mặt phẳng (SBC) và (ABC) bằng \(\widehat{SBA}=30^0\)

\(V_{S.ABM}=\frac{1}{2}V_{S.ABC}=\frac{1}{2}SA.AB.BC\)

\(BC=AB=a;SA=AB.\tan30^0=\frac{a\sqrt{3}}{3}\)

Vậy \(V_{s.ABM}=\frac{a^3\sqrt{3}}{36}\)

 

 

17 tháng 3 2018

5 tháng 7 2017

Đáp án D

25 tháng 8 2017

Đáp án B

Gọi H là chân đường vuông góc hạ từ đỉnh S lên mặt phẳng (ABC), khi đó ta chứng minh được H là trung điểm của BC. Gọi M là trung điểm của AB khi đó từ giả thiết ta có: 

Đặt AB = x ta tính được: 

20 tháng 1 2018

26 tháng 1 2017

Chọn A

Cách 1:

Dễ thấy hai tam giác SAB và SAC bằng nhau (cạnh chung SA), gọi K là chân đường cao hạ từ A trong tam giác SAB

Từ giả thiết tam giác ABC vuông cân tại B ta được 

Trong tam giác ICK vuông tại I .

Như vậy Ik > IB (vô lý).

TH2:  tương tự phần trên ta có 

D nên tam giác BIK vuông tại K và 

 

Như vậy tam giác BKI đồng dạng với tam giác BHS suy ra: 

Vậy thể tích của khối chóp S.ABC là 

Cách 2: dùng phương pháp tọa độ hóa.

15 tháng 2 2018

15 tháng 5 2019

12 tháng 7 2017