K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2018

Chọn C.

Phương pháp: Sử dụng công thức tính thể tích khối chóp khi biết ba góc ở một đỉnh và ba cạnh ở đỉnh đó.

(trong đó a, b, c là độ dài ba cạnh, x, y, z là số đo ba góc ở một đỉnh)

Sau đó tính khoảng cách dựa vào công thức tính thể tích h = 3 V h .

Cách giải: Áp dụng công thức trên ta có:

2 tháng 8 2017

Gọi H là trung điểm của AC

Đỉnh S cách đều các điểm A, B, C 

Xác đinh được 

Ta có MH//SA 

Gọi I là trung điểm của AB 

 và chứng minh được 

Trong tam giác vuông SHI tính được 

Chọn A.

7 tháng 7 2019

13 tháng 5 2017

Chọn D

20 tháng 4 2017

Ta chọn (SBC) làm mặt đáy => chiều cao khối chóp là d(A, (SBC)) = 3a

Tam giác SBC vuông cân tại S nên 

Vậy thể tích khối chóp 

Chọn A.

5 tháng 7 2017

Vì AB, AC, AS đôi một vuông góc nên

Chọn C.

20 tháng 8 2017

Chọn B.

7 tháng 6 2019

Đáp án là A.

d B ; S C D = 3 2 d G ; S C D

Tính được:  G H = a 3 3 ;   S G = a 2 ; G K = a 7 .

Vậy  d B ; S C D = 3 2 d G ; S C D = 3 2 . a 7 = 3 a 2 7 .

12 tháng 10 2017

Đáp án C

B C = A B . tan 30 0 = a 3 3 ⇒ A C = a 2 3 + a 2 = 2 3 3 a V = 1 3 . S A . 1 2 . A B . B C = 1 3 . S A . 1 2 . a . a 3 3 = a 3 3 36 ⇒ S A = a 2 S B = a 2 4 + a 2 = a 5 2 V = 1 3 . d ( A ; S B C ) . 1 2 . S B . B C = 1 3 . d . 1 2 . a 5 2 . a 3 3 = a 3 3 36 ⇒ d = a 5 5

24 tháng 3 2018