K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔKMI và ΔKNH có

\(\widehat{KMI}=\widehat{KNH}\)(hai góc so le trong, MI//HN)

KM=KN

\(\widehat{IKM}=\widehat{HKN}\)(hai góc đối đỉnh)

Do đó: ΔKMI=ΔKNH

=>KI=KH

=>K là trung điểm của HI

Xét tứ giác MINH có

K là trung điểm chung của MN và HI

nên MINH là hình bình hành

b: Ta có: MNPQ là hình bình hành

=>MP cắt NQ tại trung điểm của mỗi đường

=>O là trung điểm chung của MP và NQ

Xét ΔNMP có

PK,NO là các đường trung tuyến

PK cắt NO tại H

Do đó: H là trọng tâm của ΔNMP

Xét ΔMNP có

PK là trung tuyến

H là trọng tâm

Do đó: \(PH=\dfrac{2}{3}PK\)

PH+HK=PK

=>\(HK+\dfrac{2}{3}PK=PK\)

=>\(HK=\dfrac{1}{3}PK\)

=>PH=2KH

mà KI=2KH(K là trung điểm của IH)

nên PH=HI

=>H là trung điểm của PI

c: Xét ΔMNP có

NO là đường trung tuyến

H là trọng tâm

Do đó: OH=1/3NO

=>OH=1/3QO

QO+OH=QH

=>\(\dfrac{1}{3}QO+QO=QH\)

=>\(QH=\dfrac{4}{3}QO\)

=>\(\dfrac{QO}{QH}=\dfrac{3}{4}\)

Xét ΔQHP có OF//HP

nên \(\dfrac{QO}{QH}=\dfrac{QF}{QP}\)

=>\(\dfrac{QF}{QP}=\dfrac{3}{4}\)

giúp mik với ak

20 tháng 12 2021

a: Xét tứ giác MQAP có 

MQ//AP

MP//AQ

Do đó: MQAP là hình bình hành

24 tháng 1 2018

Theo tính chất: Hai đường chéo của hình bình hành cắt nhau tại trung điểm mỗi đường, ta suy ra I là trung điểm của NQ và MP.

Xét tam giác MQN có I là trung điểm NQ, IE // MN nên IE là đường trung bình tam giác.

Vậy nên IE = MN/2

Tương tự IF là đường trung bình tam giác ANP nên IF = MN/2

Vậy nên IE = IF hay I là trung điểm EF.

Điểm N ở đâu vậy bạn?

16 tháng 12 2021

a.Ta có MNPQMNPQ là hình bình hành

→MQ//NP,MQ=NP→MQ//NP,MQ=NP

Mà F,EF,E là trung điểm MQ,NPMQ,NP

→MF=FQ=12MQ=12NP=NE=EP→MF=FQ=12MQ=12NP=NE=EP

→FQ=NE→FQ=NE

→NFQE→NFQE là hình bình hành 

→NF//QE→QE//NK→NF//QE→QE//NK

→NEQK→NEQK là hình thang

b.Ta có MF//NE,MF=NEMF//NE,MF=NE

→MNEF→MNEF là hình bình hành

Mà NP=2MN→MN=12NP=NENP=2MN→MN=12NP=NE

→MNEF→MNEF là hình thoi

→ME⊥NF,EM→ME⊥NF,EM là phân giác ˆNEFNEF^

Tương tự FP⊥EQ,EQFP⊥EQ,EQ là phân giác ˆFEPFEP^

Lại có ˆNEF+ˆFEP=180o→ME⊥QENEF^+FEP^=180o→ME⊥QE

→GFHE→GFHE là hình chữ nhật

c.Để GFHEGFHE là hình vuông

→FE→FE là phân giác ˆGFHGFH^

→FE→FE là phân giác ˆNFPNFP^

→EF⊥NP→EF⊥NP

→MN⊥NP→MN⊥NP

→MNPQ→MNPQ là hình chữ nhật

12 tháng 8 2021

ta có MNPQ là hình thang=>MN//PQ

mà \(=\angle\left(NMP\right)=\angle\left(MNQ\right)=>\angle\left(NQP\right)=\angle\left(MPQ\right)\)

=>tam giác MNO cân tại O=>MO=NO

=>tam giác QOP cân tại O=>OQ=Op

=>MO+OP=NO+OQ=>NQ=MP

=>MNPQ là hình thang cân

\(=>\angle\left(M\right)=\angle\left(N\right)\left(1\right)\)

\(\angle\left(Q\right)=\angle\left(P\right)\left(2\right)\)

mà EF//PQ=>EF//MN

=>MNFE là hình thang(3)

từ (1)(3)=>MNFE là hình thang cân

=>EFPQ là hình thang(4)

(2)(4)=>EFPQ là hình thang cân

Ta có: \(\widehat{OMN}=\widehat{OPQ}\)

\(\widehat{ONM}=\widehat{OQP}\)

mà \(\widehat{OMN}=\widehat{ONM}\)

nên \(\widehat{OPQ}=\widehat{OQP}\)

Xét ΔOMN có \(\widehat{OMN}=\widehat{ONM}\)

nên ΔOMN cân tại O

Xét ΔOPQ có \(\widehat{OPQ}=\widehat{OQP}\)

nên ΔOPQ cân tại O

Ta có: OM+OP=MP

ON+OQ=QN

mà OM=ON

và OP=OQ

nên MP=QN

Hình thang MNPQ có MP=QN

nên MNPQ là hình thang cân

Suy ra: \(\widehat{EMN}=\widehat{FNM}\) và \(\widehat{EQP}=\widehat{FPQ}\)

Hình thang EMNF có \(\widehat{EMN}=\widehat{FNM}\)

nên EMNF là hình thang cân

Hình thang EQPF có \(\widehat{EQP}=\widehat{FPQ}\)

nên EQPF là hình thang cân