Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Ta có MNPQMNPQ là hình bình hành
→MQ//NP,MQ=NP→MQ//NP,MQ=NP
Mà F,EF,E là trung điểm MQ,NPMQ,NP
→MF=FQ=12MQ=12NP=NE=EP→MF=FQ=12MQ=12NP=NE=EP
→FQ=NE→FQ=NE
→NFQE→NFQE là hình bình hành
→NF//QE→QE//NK→NF//QE→QE//NK
→NEQK→NEQK là hình thang
b.Ta có MF//NE,MF=NEMF//NE,MF=NE
→MNEF→MNEF là hình bình hành
Mà NP=2MN→MN=12NP=NENP=2MN→MN=12NP=NE
→MNEF→MNEF là hình thoi
→ME⊥NF,EM→ME⊥NF,EM là phân giác ˆNEFNEF^
Tương tự FP⊥EQ,EQFP⊥EQ,EQ là phân giác ˆFEPFEP^
Lại có ˆNEF+ˆFEP=180o→ME⊥QENEF^+FEP^=180o→ME⊥QE
→GFHE→GFHE là hình chữ nhật
c.Để GFHEGFHE là hình vuông
→FE→FE là phân giác ˆGFHGFH^
→FE→FE là phân giác ˆNFPNFP^
→EF⊥NP→EF⊥NP
→MN⊥NP→MN⊥NP
→MNPQ→MNPQ là hình chữ nhật
Câu 1:
a)
\(BM=MC=\frac{1}{2}BC\) (M là trung điểm của BC)
\(AN=ND=\frac{1}{2}AD\) (N là trung điểm của AD)
mà \(BC=AD\) (ABCD là hình bình hành)
\(\Rightarrow AN=ND=BM=MC\) (1)
mà ND // BM
=> BMDN là hình bình hành
=> BN // MD (2)
=> MDKB là hình thang
b)
MC = AN (theo 1)
mà MC // AN (ABCD là hình bình hành)
=> AMCN là hình bình hành
=> AM // CN (3)
Từ (2) và (3)
=> MPNQ là hình bình hành (4)
BM = AN (theo 1)
mà BM // AN (ABCD là hình bình hành)
=> ABMN là hình bình hành
mà AB = BM \(\left(=\frac{1}{2}BC\right)\)
=> ABMN là hình thoi
=> AM _I_ BN
=> MPN = 900 (5)
Từ (4) và (5)
=> MPNQ là hình chữ nhật
c)
MPNQ là hình vuông
<=> MN là tia phân giác của PMQ
mà MN là đường trung tuyến của tam giác MDA vuông tại M (N là trung điểm của AD; MPNQ là hình chữ nhật)
=> Tam giác MDA vuông cân tại M có MN là đường trung tuyến
=> MN là đường cao của tam giác MDA
=> MNA = 900
mà MNA = ABM (ABMN là hình thoi)
=> ABM = 900
mà ABCD là hình bình hành
=> ABCD là hình chữ nhật
Câu 2:
a)
\(AE=EB=\frac{AB}{2}\) (E là trung điểm của của AB)
\(CF=FD=\frac{CD}{2}\) (F là trung điểm của của CD)
mà AB = CD (ABCD là hình bình hành)
=> AE = EB = CF = FD (1)
mà AE // CF (ABCD là hình bình hành)
=> AECF là hình bình hành
b)
AE = FD (theo 1)
mà AE // FD (ABCD là hình bình hành)
=> AEFD là hình bình hành
mà DA = AE \(\left(=\frac{1}{2}AB\right)\)
=> AEFD là hình thoi
=> AF _I_ ED
=> EMF = 900 (2)
EB = FD (theo 1)
mà EB // FD (ABCD là hình bình hành)
=> EBFD là hình bình hành
=> EM // NF
mà EN // MF (AECF là hình bình hành)
=> EMFN là hình bình hành
mà EMF = 900 (theo 2)
=> EMFN là hình chữ nhật
c)
EMFN là hình vuông
<=> EF là tia phân giác của MEN
mà EF là đường trung tuyến của tam giác ECD vuông tại E (F là trung điểm của CD; EMFN là hình chữ nhật)
=> Tam giác ECD vuông cân tại E có EF là đường trung tuyến
=> EF là đường cao của tam giác ECD
=> EFD = 900
mà EFD = DAE (AEFD là hình thoi)
=> DAE = 900
mà ABCD là hình bình hành
=> ABCD là hình chữ nhật
cho hình bình hành ABCD có AB=2BC.GọiE,F theo thứ tự là trung điểm của AB và CD,K là giao điểm của tia DE với CB
a)chứng minh tứ giác EBFD là hình bình hành và BFDK là hình thang
b)gọi G là giao điểm của AF với DF, H là giao điểm của EC với FB.Tứ giác GEHF là hình gì ? vì sao?
c) Hình bình hành ABCD có thêm điều kiện gì thì tứ giác GEHF là hình vuông
Mình gửi ảnh nhưng nó không hiện, bạn vào thống kê hỏi đáp của mình nhé.
Phần 2
a: Xét tứ giác MHKQ có
MH//QK
MH=QK
Do đó: MHKQ là hình bình hành
mà MH=MQ
nên MHKQ là hình thoi
a) Chứng minh tứ giác MBKD là hình thang.( bạn tự vẽ hình nhé!)
- Đầu tiên CM tứ giác MBND là hình bình hành.
Vì ABCD là hình bình hành AD = BC AN = ND = BM = MC
Và AD // BC=> ND // BM
Xét tứ giác MBND, ta có:
ND // BM
ND = BM
Tứ giác MBND là hình bình hành.
NB // MD . Mà NB giao với MD = {K}=> B, N , K thẳng hàng.
Xét tứ giác MBKD, ta có:
NB // MD
B, N , K thẳng hàng
=> MD // BK
=>Tứ giác MBKD là hình thang ( đpcm ).
b)
Vì P thuộc BK, Q thuộc MD mà BK // MD QM // PN ( 1 )
Vì P thuộc AM, Q thuộc NC PM // QN (2)
Từ (1), (2)=> PMQN là hình bình hành. ( 3 )
Theo CM ở câu a) ANMB là hình thoi ( có 4 cạnh bằng nhau )
AM vuông góc với BN. (4)
Từ (3), (4) PMQN là hình chữ nhật.
c) Để PMQN là hình vuông thì hình bình hành phải có thêm điều kiện là góc A = 90o
Nếu A = 90o thì tứ giác ANMB là hình vuông=> AM vuông góc với BN
Theo tính chất đường chéo của hình vuông=> PN = PM
Hình chữ nhật PMQN có 2 cạnh kề bằng nhau nên nó sẽ là hình vuông ( đpcm )
của luckybaby_98 trên diễn đàn học mãi giống y chang luôn, mih cx có nick trên diễn đàn học mãi mak |