K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2017

a.Xét  ΔAME và  ΔCNF có
AM=CN(gt)
Góc MAE= góc NCF
AE=CF(gt)
Do đó ΔAME =  ΔCNF (c.g.c)
=> ME=NF(2 cạnh tương ứng)
Tương tự  ΔDMF=  ΔBNE(c.g.c)
=>MF=NE(2 cạnh tương ứng)
Tứ giác EMFN có
ME=NF(gt)
MF=NE(gt)
=>EMFN là hình bình hành

b) b/ Ta có: OE=OF (MENF là hình bình hành)
ON=OM(MENF là hình bình hành)
OD=OB (ABCD là hình bình hành)
OA=OC(ABCDlà hình bình hành)
=>AC, BD, MN, E giao nhau tại O
hay AC, BD, MN, EF đồng quy

cn lại bó tay

a: Ta có: BE+AE=BA

DF+FC=DC

mà BA=DC

và AE=FC

nên BE=DF

Ta có: AN+ND=AD

CM+MB=CB

mà AD=CB

và AN=CM

nên ND=MB

Xét ΔANE và ΔCMF có 

AN=CM

\(\widehat{A}=\widehat{C}\)

AE=CF

Do đó: ΔANE=ΔCMF

Suy ra: NE=MF

Xét ΔEBM và ΔFDN có 

EB=FD

\(\widehat{B}=\widehat{D}\)

BM=DN

Do đó: ΔEBM=ΔFDN

Suy ra: EM=FN

Xét tứ giác MENF có 

ME=NF

NE=MF

Do đó: MENF là hình bình hành

Ta có: BE+AE=BA

DF+FC=DC

mà BA=DC

và AE=FC

nên BE=DF

Ta có: AN+ND=AD

CM+MB=CB

mà AD=CB

và AN=CM

nên ND=MB

Xét ΔANE và ΔCMF có 

AN=CM

\(\widehat{A}=\widehat{C}\)

AE=CF

Do đó: ΔANE=ΔCMF

Suy ra: NE=MF

Xét ΔEBM và ΔFDN có 

EB=FD

\(\widehat{B}=\widehat{D}\)

BM=DN

Do đó: ΔEBM=ΔFDN

Suy ra: EM=FN

Xét tứ giác MENF có 

ME=NF

NE=MF

Do đó: MENF là hình bình hành

a: Ta có: BE+AE=BA

DF+FC=DC

mà BA=DC

và AE=FC

nên BE=DF

Ta có: AN+ND=AD

CM+MB=CB

mà AD=CB

và AN=CM

nên ND=MB

Xét ΔANE và ΔCMF có 

AN=CM

\(\widehat{A}=\widehat{C}\)

AE=CF

Do đó: ΔANE=ΔCMF

Suy ra: NE=MF

Xét ΔEBM và ΔFDN có 

EB=FD

\(\widehat{B}=\widehat{D}\)

BM=DN

Do đó: ΔEBM=ΔFDN

Suy ra: EM=FN

Xét tứ giác MENF có 

ME=NF

NE=MF

Do đó: MENF là hình bình hành