Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Đường thẳng d có vecto pháp tuyến là n→(1;-2) nên 1 vecto chỉ phương của d là(2; 1)
=> Vecto v→ không cùng phương với vecto chỉ phương của đường thẳng d
=> Qua phép tịnh tiến v→ biến đường thẳng d thành đường thẳng d’ song song với d.
Nên đường thẳng d’ có dạng : x- 2y + m= 0
Lại có B(-1; 1) d nên B’(-2;3) d’
Thay tọa độ điểm B’ vào phương trình d’ ta được:
-2 -2.3 +m =0 ⇔ m= 8
Vậy phương trình đường thẳng d’ là:x- 2y + 8 = 0
Ta có: A(-1; 2) ∈ (d): 3x + y + 1 = 0.
⇒ (d’): 3x + y – 6 = 0.
b. ĐOy (A) = A1 (1 ; 2)
Lấy B(0 ; -1) ∈ d
Ảnh của B qua phép đối xứng trục Oy: ĐOy (B) = B(0; -1) (vì B ∈ Oy).
⇒ d1 = ĐOy (d) chính là đường thẳng A1B.
⇒ d1: 3x – y – 1 = 0.
c. Phép đối xứng tâm O biến A thành A2(1; -2).
d2 là ảnh của d qua phép đối xứng tâm O
⇒ d2 // d và d2 đi qua A2(1 ; -2)
⇒ (d2): 3x + y – 1 = 0.
d. Gọi M(-1; 0) và N(0; 2) lần lượt là hình chiếu của A(-1; 2) trên Ox, Oy.
Q(O;90º) biến N thành N’(-2; 0), biến A thành A’, biến M thành B(0; -1).
Vậy Q(O;90º) biến hình chữ nhật ONAM thành hình chữ nhật ON’A’B. Do đó A’(-2; -1) đi qua A và B, Q(O;90º) biến A thành A’(-2; -1) biến B thành B’(1; 0)
Vậy Q(O;90º) biến d thành d’ qua hai điểm A’, B’
Do đó phương trình d’ là :
\(d'=T_{\overrightarrow{v}}\left(d\right)\)
Ta có: \(\left\{{}\begin{matrix}x'=x+a\\y'=y+b\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=x'-a=x'-3\\y=y'-b=y'-4\end{matrix}\right.\)
Thay vào pt \(\left(d\right):x+y-6=0\) ta đc:
\(\Rightarrow\left(x'-3\right)+\left(y'-4\right)-6=0\)
\(\Rightarrow x'+y'-13=0\)
Vậy \(\left(d'\right):x+y-13=0\)
Gọi \(D\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(2;2\right)\\\overrightarrow{DC}=\left(8-x;2-y\right)\end{matrix}\right.\)
\(\overrightarrow{AB}=\overrightarrow{DC}\Rightarrow\left\{{}\begin{matrix}8-x=2\\2-y=2\end{matrix}\right.\) \(\Rightarrow D\left(6;0\right)\)
\(\overrightarrow{DD'}=\overrightarrow{v}=\left(-2;1\right)\Rightarrow D'\left(4;1\right)\) \(\Rightarrow\overrightarrow{D'B}=\left(1;5\right)\)
\(\Rightarrow\) Đường thẳng BD' nhận \(\left(5;-1\right)\) là 1 vtpt
Pt BD': \(5\left(x-5\right)-1\left(y-6\right)=0\Leftrightarrow5x-y-19=0\)
\(\Rightarrow d\left(O;BD'\right)=\frac{\left|-19\right|}{\sqrt{5^2+\left(-1\right)^2}}=\frac{19}{\sqrt{26}}\)