K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C D E F I K M

a, Vì ABCD là hình bình hành nên AD = BC

mà AD = AF ( vì tam giác ADF đều )

=> BC = AF 

Xét tam giác BCE và tam giác AFE có :

             BC = AF ( theo chứng minh trên )

             BE = AE ( vì tam giác ABE đều )

             góc EBC = 60độ + góc ABC = 60độ + ( 180độ - gócBAD ) = 360độ - góc BAD - ( góc FAD + góc BAE ) = EAF

Do đó : tam giác BCE = tam giác AFE ( c.g.c )

=> CE = FE ( hai cạnh tương ứng ) ( 1 )

  Tương tự ta xét tam giác AFE và tam giác DFC ( c.g.c )

=> FE = FC ( hai cạnh tương ứng ) ( 2 )

Từ ( 1 ) và ( 2 ) suy ra : FE = CE = FD 

=> tam giác EFC đều .

Mk mới học sơ sơ về hình bình hành , chỗ mk mới học đến bài hình thang cân nên mk chỉ lm đc đến đây thui nhé .

Học tốt

2 tháng 8 2017

A,Xét tam giác EBC và tam giác FAE, vì ABCD là hình bình hành và hai tam giác ABE, ADF đều nên ta có: 

* EB = EA 
* BC = AD = AF 
* ^EBC = 60o + ^ABC = 60o + (180o - ^BAD) = 360o - ^BAD - (^FAD + ^BAE) = ^EAF 

Do đó 2 tam giác trên bằng nhau. Từ đó suy ra EC = EF (2 cạnh tương ứng). 
Hoàn toàn tương tự với tam giác EBC và CDF, ta cũng suy ra được CF = FE. 
Vậy EC = EF = CF hay tam giác EFC đều. (đpcm) 

2 tháng 8 2017

Okie thanks Tú na

5 tháng 10 2016

đó là câu b

19 tháng 10 2017

nụ hôn trên giường

28 tháng 9 2016

Mk chỉ làm phần a thôi nhé bạn !

                              Bài giải: 
Xét tam giác EBC và tam giác FAE, vì ABCD là hình bình hành và hai tam giác ABE, ADF đều nên ta có: 

* EB = EA 
* BC = AD = AF 
* ^EBC = 60o + ^ABC = 60o + (180o - ^BAD) = 360o - ^BAD - (^FAD + ^BAE) = ^EAF 

Do đó 2 tam giác trên bằng nhau. Từ đó suy ra EC = EF (2 cạnh tương ứng). 
Hoàn toàn tương tự với tam giác EBC và CDF, ta cũng suy ra được CF = FE. 
Vậy EC = EF = CF hay tam giác EFC đều. (đpcm) 

7 tháng 6 2019

Vì chx ai TL nên bn có thể tham khảo tại google

7 tháng 6 2019

#)Giải :

Xét \(\Delta EBC\) và \(\Delta FAE\), vì ABCD là hình bình hành và hai \(\Delta ABE;\Delta ADF\) đều nên ta có: 

             EB = EA

             BC = AD = AF 

             EBC = 60o + \(\widehat{ABC}\) = 60o + (180o - \(\widehat{BAD}\)) = 360o - \(\widehat{BAD}\) - (\(\widehat{FAD}\)+ \(\widehat{BAE}\)) = \(\widehat{EAF}\)

=> \(\Delta EBC=\Delta FAE\Rightarrow EC=EF\)( cặp cạnh tương ứng bằng nhau )

Tương tự với \(\Delta EBC;\Delta CDF\), ta cũng suy ra được CF = FE. 

=> EC = EF = CF hay tam giác EFC đều. (đpcm)