Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải thích các bước giải:
a) Xét tam giác ABC và AMC có chung chiều cao hạ từ đỉnh C mà M là trung điểm AB nên AB = 2 x AM => S_ABC = 2 x S_AMC
Xét tam giác AMC với AMD có chung đáy AM, chiều cao hạ từ đỉnh D đáy AM = chiều cao từ đỉnh C đáy AM => S_AMC = S_AMD.
b) Nối AN và EN
Xét các tam giác AMC và ANC đều = 1/4 diện tích hình bình hành = 15 cm2. Mặt khác 2 tam giác này có chung đáy AC => chiều cao hạ từ đỉnh M xuống đáy AC = chiều cao từ đỉnh N đáy AC.
Xét tam giác ENC và EMC chung đáy EC, chiều cao bằng nhau => S_ENC = S_EMC. (1)
Xét tam giác EDN và ENC chung đỉnh E, đáy DN = NC => S_EDN = S_ENC (2)
Xét S tam giác AMD = S_AMC (phần a đã chứng minh) có chung AME => S_AED = S_EMC (3)
Từ (1) ; (2) và (3) => S_EMC = S_ENC = S_EDN = S_AED.
Ta có S_MBC = 15 cm2 => S_ACD = 15 x 2 = 3 (cm2)
Mà S_ACD = S_ENC + S_EDN + S_AED và 3 tam giác này bằng nhau nên :
S_ENC = 30 : 3 = 10 (cm2) mà S_ENC = S_MEC.
Vậy diện tích MEC = 10 cm2.
c) Từ S_MEC = 10 cm2 => S_MEA = 15 - 10 = 5 (cm2)
Xét có chung chiều cao đỉnh M mà S_MEA/S_MCA = 5/15 = 1/3 =>đáy AE = 1/3 AC
(với cách chứng minh tương tự ta có S_NGC = 5 cm2 và GC = 1/3 AC)
Vậy EG = AC - 1/3 AC - 1/3 AC = 1/3AC
Vậy AE = EG = GC
Giải thích các bước giải:
a) Xét tam giác ABC và AMC có chung chiều cao hạ từ đỉnh C mà M là trung điểm AB nên AB = 2 x AM => S_ABC = 2 x S_AMC
Xét tam giác AMC với AMD có chung đáy AM, chiều cao hạ từ đỉnh D đáy AM = chiều cao từ đỉnh C đáy AM => S_AMC = S_AMD.
b) Nối AN và EN
Xét các tam giác AMC và ANC đều = 1/4 diện tích hình bình hành = 15 cm2. Mặt khác 2 tam giác này có chung đáy AC => chiều cao hạ từ đỉnh M xuống đáy AC = chiều cao từ đỉnh N đáy AC.
Xét tam giác ENC và EMC chung đáy EC, chiều cao bằng nhau => S_ENC = S_EMC. (1)
Xét tam giác EDN và ENC chung đỉnh E, đáy DN = NC => S_EDN = S_ENC (2)
Xét S tam giác AMD = S_AMC (phần a đã chứng minh) có chung AME => S_AED = S_EMC (3)
Từ (1) ; (2) và (3) => S_EMC = S_ENC = S_EDN = S_AED.
Ta có S_MBC = 15 cm2 => S_ACD = 15 x 2 = 3 (cm2)
Mà S_ACD = S_ENC + S_EDN + S_AED và 3 tam giác này bằng nhau nên :
S_ENC = 30 : 3 = 10 (cm2) mà S_ENC = S_MEC.
Vậy diện tích MEC = 10 cm2.
c) Từ S_MEC = 10 cm2 => S_MEA = 15 - 10 = 5 (cm2)
Xét có chung chiều cao đỉnh M mà S_MEA/S_MCA = 5/15 = 1/3 =>đáy AE = 1/3 AC
(với cách chứng minh tương tự ta có S_NGC = 5 cm2 và GC = 1/3 AC)
Vậy EG = AC - 1/3 AC - 1/3 AC = 1/3AC
Vậy AE = EG = GC
a) -Kẻ CH vuông góc với AB tại H
Ta có: + diện tích ΔABC = 1/2 ×CH×AB
+ diện tích ΔAMC= 1/2×CH×AM
Vì AB > AM ( AB =2AM)
=> diện tích ΔABC > diện tích ΔAMC
- Kẻ MN vuông góc với DC tại N
=> MN=CH
Ta có : S ΔAMC= 1/2×CH×AM
S ΔAMD= 1/2×MN×Am
Vì MN=CH ( cmt)
=> diện tích ΔAMC = diện tích ΔAMD
- Ta có : S ΔMDC=1/2×MN×CD
S ΔAMD=1/2×MN×AM
Vì CD > AM ( vì AB = CD, AM < AB)
=> diện tích ΔMDC > diện tích ΔAMD
Bài này dài quá lười lm có j tự lm câu b và câu c nhé !!!!
_Học tốt_
1) \(S_{AMC}=\frac{1}{3}\times S_{ABC}\)(chung đường cao hạ từ \(C\), \(AM=\frac{1}{3}\times AB\))
\(S_{AMN}=\frac{1}{3}\times S_{AMC}\)(chung đường cao hạ từ \(M\), \(AN=\frac{1}{3}\times AC\))
\(S_{AMN}=\frac{1}{3}\times S_{AMC}=\frac{1}{3}\times\frac{1}{3}\times S_{ABC}=\frac{1}{9}\times S_{ABC}\)
2) \(S_{AKN}=\frac{1}{3}\times S_{AKC}\)(chung đường cao hạ từ \(K\), \(AN=\frac{1}{3}\times AC\))
\(S_{AKM}=\frac{1}{3}\times S_{AKB}\)(chung đường cao hạ từ \(K\), \(AM=\frac{1}{3}\times AB\))
Cộng lại vế với vế ta được:
\(S_{AKN}+S_{AKM}=\frac{1}{3}\times\left(S_{AKC}+S_{AKB}\right)\)
\(\Leftrightarrow S_{AMKN}=\frac{1}{3}\times S_{ABC}\)
Dễ thấy \(H\)nằm trên đoạn \(AK\)nên \(AH< AK\).
Nối AN và EN
Xét các tam giác AMC và ANC đều = \(\frac{1}{4}\) diện tích hình bình hành = 15 cm2. Mặt khác 2 tam giác này có chung đáy AC \(\Rightarrow\)chiều cao hạ từ đỉnh M xuống đáy AC = chiều cao từ đỉnh N đáy AC.
Xét tam giác ENC và EMC chung đáy EC, chiều cao bằng nhau \(\Rightarrow\)\(S_{ENC}=S_{EMC}\left(1\right)\)
Xét tam giác EDN và ENC chung đỉnh E, đáy DN = NC \(\Rightarrow\)\(S_{EDN}=S_{ENC}\left(2\right)\)
Xét \(S_{AMD}\) = \(S_{AMC}\) có chung AME \(\Rightarrow\)\(S_{AED}=S_{EMC}\left(3\right)\)
Từ (1) ; (2) và (3) \(\Rightarrow\) \(S_{EMC}=S_{ENC}=S_{EDN}=S_{AED}\)
Ta có \(S_{MBC}=\) 15 cm2 \(\Rightarrow\) \(S_{ACD}\)= 15 x 2 = 30 (cm2)
Mà \(S_{ACD}\) \(=S_{ENC}+S_{EDN}+S_{AED}\) và 3 tam giác này bằng nhau nên :
\(S_{ENC}\) = 30 : 3 = 10 (cm2) mà \(S_{ENC}\) = \(S_{MEC}\)
Vậy diện tích MEC = 10 cm2.
\(S_{AMD}=\frac{1}{2}S_{MDC}\)vì đáy \(AM=\frac{1}{2}DC\)và chiều cao kẻ từ \(D\)đến \(AM\)bằng chiều cao kẻ từ \(M\)đến \(DC\)vì cả hai chiều cao đều là chiều cao của hình thang
\(S_{AMD}=\frac{1}{2}S_{MDC}\)mà chung đáy \(MD\)nên chiều cao \(AH=\frac{1}{2}\)chiều cao \(CK\)
Ta có: Chiều cao \(AH\)cũng chính là chiều cao \(\Delta AME\)và chiều cao \(CK\)cũng chính là chiều cao của \(\Delta MEC\)
\(S_{AME}=\frac{1}{2}S_{MEC}\)vì chung đáy \(ME\)và chiều cao \(AH=\frac{1}{2}CK\)
\(\Rightarrow\)Coi \(S_{AME}\)là một phần, \(S_{MEC}\)là hai phần, \(S_{MAC}\)là 3 phần
Ta có: \(S_{MAC}=S_{MBC}\)vì đáy \(MA=MB\)và chung chiều cao kẻ từ \(C\)đến \(AB\)
\(S_{MEC}=15:\left(1+2\right).2=10\left(cm^2\right)\)
Vậy \(S_{MEC}=10cm^2\)
*Hình,lời giải thì bạn tự làm , có thể sẽ có 1 bạn vẽ hình cho bạn :)
a)
\(AM=\frac{1}{2}AB\Rightarrow S_{AMC}=\frac{1}{2}S_{ABC}\)
\(\Delta AMC.\Delta AMD\Rightarrow S_{AMC}=S_{AMB}\)
Có \(d\left(D;AM\right)=d\left(C;AM\right)\)
b)
\(S_{EMC}=\frac{1}{2}S_{MBC}=\frac{1}{2}.15=7,5\left(cm^2\right)\)
c)
Bạn check lại đề phần c) nhé
c) Mình làm theo đề bạn sử nhé
Gọi O là giao điểm MN và AC
Ta có : AMND là hình bình hành
AE là trọng tâm \(\Rightarrow\)\(\Delta AMN\Rightarrow AE=\frac{2}{3}AO\)
Mà \(AO=\frac{1}{2}AC\Rightarrow AE=\frac{1}{3}AC\)
Chứng minh tương tự ta có :
\(GC=\frac{1}{3}AC\)
\(\Rightarrow EG=\frac{1}{3}AC\)
\(\Rightarrow EG=GC=AE\)